nafuma/beamtime/xanes/calib.py

138 lines
5.6 KiB
Python
Raw Normal View History

2021-09-10 15:38:27 +02:00
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
import beamtime.auxillary as aux
2021-09-10 15:38:27 +02:00
2021-09-10 16:29:31 +02:00
def rbkerbest():
print("ROSENBORG!<3")
2021-10-14 14:18:39 +02:00
#def split_xanes_scan(filename, destination=None):
2021-09-10 16:29:31 +02:00
2021-10-14 14:18:39 +02:00
# with open(filename, 'r') as f:
2021-09-10 15:38:27 +02:00
2021-10-14 14:18:39 +02:00
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
def pre_edge_subtraction(df,filenames, options={}):
2021-09-10 15:38:27 +02:00
required_options = ['edge', 'print']
default_options = {
'edge' : 'Mn',
'print': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
2021-09-10 15:38:27 +02:00
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
if str(options['edge']) == 'Mn':
edge_start = 6.45
if str(options['edge']) == 'Ni':
edge_start = 8.3
2021-09-10 15:38:27 +02:00
#making a function to check the difference between values in the list and the defined start of the edge (where background regression will stop):
absolute_difference_function = lambda list_value : abs(list_value - edge_start)
2021-09-10 15:38:27 +02:00
#finding the energy data point value that is closest to what I defined as the end of the background
edge_start_value = min(df["ZapEnergy"], key=absolute_difference_function)
2021-09-10 15:38:27 +02:00
#Finding what the index of the edge shift end point is
start_index=df[df["ZapEnergy"]==edge_start_value].index.values[0]
2021-09-10 15:38:27 +02:00
#Defining x-range for linear background fit, ending at the edge start index
df_start=df[0:start_index]
#Making a new dataframe, with only the ZapEnergies as the first column
df_background = pd.DataFrame(df["ZapEnergy"])
2021-09-10 15:38:27 +02:00
for files in filenames:
2021-09-10 15:38:27 +02:00
#Fitting linear function to the pre-edge
d = np.polyfit(df_start["ZapEnergy"],df_start[files],1)
function_pre = np.poly1d(d)
#making a list, y_pre,so the background will be applied to all ZapEnergy-values
y_pre=function_pre(df["ZapEnergy"])
#adding a new column in df_background with the y-values of the background
df_background.insert(1,files,y_pre)
#Plotting the calculated pre-edge background with the region used for the regression
### FOR FIGURING OUT WHERE IT GOES WRONG/WHICH FILES IS CORRUPT
#ax = df.plot(x = "ZapEnergy",y=files)
if options['print'] == True:
#Plotting an example of the edge_start region and the fitted background that will later be subtracted
ax = df.plot(x = "ZapEnergy",y=filenames[0]) #defining x and y
plt.axvline(x = edge_start_value)
fig = plt.figure(figsize=(15,15))
df_background.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
###################### Subtracting the pre edge from xmap_roi00 ################
#making a new dataframe to insert the background subtracted intensities
df_new = pd.DataFrame(df["ZapEnergy"])
#inserting the pre_edge-background subtracted original xmap_roi00 data
for files in filenames:
newintensity_calc=df[files]-df_background[files]
df_new.insert(1,files,newintensity_calc)
if options['print'] == True:
#Plotting original data (black) and background subtracted data (red)
ax = df.plot(x = "ZapEnergy",y=filenames[0], color="Black")
plt.axvline(x = edge_start_value)
fig = plt.figure(figsize=(15,15))
df_new.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
return df_new
def post_edge_normalization(df,df_new,filenames, options={}):
required_options = ['edge', 'print']
default_options = {
'edge' : 'Mn',
'print': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
if str(options['edge']) == 'Mn':
edge_stop = 6.565
if str(options['edge']) == 'Ni':
edge_stop = 8.361
absolute_difference_function = lambda list_value : abs(list_value - edge_stop)
edge_stop_value = min(df_new["ZapEnergy"], key=absolute_difference_function)
end_index=df_new[df_new["ZapEnergy"]==edge_stop_value].index.values[0]
#Defining x-range for linear fit
df_fix=df_new
df_fix.dropna(inplace=True) #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
df_end=df_fix[end_index:] #The region of interest for the post edge
#print(df_end)
#Fitting linear function to the pre-edge using the background corrected intensities to make the post edge fit
df_postedge = pd.DataFrame(df["ZapEnergy"])
function_post_list=[]
for files in filenames:
d = np.polyfit(df_end["ZapEnergy"],df_end[files],1)
function_post = np.poly1d(d)
y_post=function_post(df["ZapEnergy"])
function_post_list.append(function_post)
df_postedge.insert(1,files,y_post) #adding a new column with the y-values of the fitted post edge
#print(filenames[0])
#print(df_postedge)
#Plotting the background subtracted signal with the post-edge regression line and the start point for the linear regression line
if options['print'] == True:
ax = df_new.plot(x = "ZapEnergy",y=filenames) #defining x and y
plt.axvline(x = edge_stop_value)
fig = plt.figure(figsize=(15,15))
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
#print(function_post_list)
#print(function_post)
ax = df_new.plot(x = "ZapEnergy",y=filenames, legend=False) #defining x and y
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
plt.axvline(x = edge_stop_value)