nafuma/beamtime/plotting.py

280 lines
9 KiB
Python
Raw Normal View History

2022-03-11 10:00:29 +01:00
import beamtime.auxillary as aux
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator)
from mpl_toolkits.axes_grid.inset_locator import (inset_axes, InsetPosition, mark_inset)
import importlib
import matplotlib.patches as mpatches
from matplotlib.lines import Line2D
import matplotlib.lines as mlines
from cycler import cycler
import itertools
def prepare_plot(options={}):
''' Prepares plot based on contents of options['rc_params'] and options['format_params'].
rc_params is a dictionary with keyval-pairs corresponding to rcParams in matplotlib
format_params will determine the size and aspect ratios of '''
rc_params = options['rc_params']
format_params = options['format_params']
required_options = ['single_column_width', 'double_column_width', 'column_type', 'width_ratio', 'aspect_ratio', 'compress_width', 'compress_height', 'upscaling_factor', 'dpi']
default_options = {
'single_column_width': 8.3,
'double_column_width': 17.1,
'column_type': 'single',
'width_ratio': '1:1',
'aspect_ratio': '1:1',
'compress_width': 1,
'compress_height': 1,
'upscaling_factor': 1.0,
'dpi': 600,
}
options = aux.update_options(format_params, required_options, default_options)
# Reset run commands
plt.rcdefaults()
# Update run commands if any is passed (will pass an empty dictionary if not passed)
update_rc_params(rc_params)
width = determine_width(options)
height = determine_height(options, width)
width, height = scale_figure(options=options, width=width, height=height)
fig, ax = plt.subplots(figsize=(width, height), dpi=options['dpi'])
return fig, ax
2022-03-11 11:58:58 +01:00
def prettify_plot(fig, ax, plot_data, options):
2022-03-11 10:00:29 +01:00
2022-03-11 11:58:58 +01:00
required_options = ['plot_kind',
'hide_x_labels', 'hide_y_labels',
'rotation_x_ticks', 'rotation_y_ticks',
'xlim', 'ylim',
'x_tick_locators', 'y_tick_locators',
'xticks', 'hide_x_ticks', 'hide_y_ticks', 'hide_x_ticklabels', 'hide_y_ticklabels',
2022-03-11 10:00:29 +01:00
'colours', 'palettes', 'title', 'legend', 'legend_position', 'subplots_adjust', 'text', 'legend_ncol']
default_options = {
2022-03-11 11:58:58 +01:00
'plot_kind': None, # defaults to None, but should be utilised when requiring special formatting for a particular plot
2022-03-11 10:00:29 +01:00
'hide_x_labels': False, # Whether x labels should be hidden
'hide_x_ticklabels': False,
'hide_x_ticks': False,
'rotation_x_ticks': 0,
'hide_y_labels': False, # whether y labels should be hidden
'hide_y_ticklabels': False,
'hide_y_ticks': False,
'rotation_y_ticks': 0,
'xlim': None,
'ylim': None,
'x_tick_locators': [.5, .25], # Major and minor tick locators
'y_tick_locators': [.5, .25],
'xticks': None,
'labels': None,
'colours': None,
'palettes': [('qualitative', 'Dark2_8'), ('qualitative', 'Paired_12')],
'title': None,
'legend': False,
'legend_position': ['lower center', (0.5, -0.1)], # the position of the legend passed as arguments to loc and bbox_to_anchor respectively
'legend_ncol': 1,
'subplots_adjust': [0.1, 0.1, 0.9, 0.9],
'text': None
}
options = update_options(options=options, required_options=required_options, default_options=default_options)
# Set labels on x- and y-axes
if not options['hide_y_labels']:
ax.set_ylabel(f'{options["ylabel"]} [{options["yunit"]}]')
else:
ax.set_ylabel('')
if not options['hide_x_labels']:
ax.set_xlabel(f'{options["xlabel"]}')
else:
ax.set_xlabel('')
# Set multiple locators
ax.yaxis.set_major_locator(MultipleLocator(options['y_tick_locators'][0]))
ax.yaxis.set_minor_locator(MultipleLocator(options['y_tick_locators'][1]))
ax.xaxis.set_major_locator(MultipleLocator(options['x_tick_locators'][0]))
ax.xaxis.set_minor_locator(MultipleLocator(options['x_tick_locators'][1]))
if options['xticks']:
ax.set_xticks(np.arange(plot_data['start'], plot_data['end']+1))
ax.set_xticklabels(options['xticks'])
else:
ax.set_xticks(np.arange(plot_data['start'], plot_data['end']+1))
ax.set_xticklabels([x/2 for x in np.arange(plot_data['start'], plot_data['end']+1)])
# Hide x- and y- ticklabels
if options['hide_y_ticklabels']:
ax.tick_params(axis='y', direction='in', which='both', labelleft=False, labelright=False)
else:
plt.xticks(rotation=options['rotation_x_ticks'])
#ax.set_xticklabels(ax.get_xticks(), rotation = options['rotation_x_ticks'])
if options['hide_x_ticklabels']:
ax.tick_params(axis='x', direction='in', which='both', labelbottom=False, labeltop=False)
else:
pass
#ax.set_yticklabels(ax.get_yticks(), rotation = options['rotation_y_ticks'])
# Hide x- and y-ticks:
if options['hide_y_ticks']:
ax.tick_params(axis='y', direction='in', which='both', left=False, right=False)
if options['hide_x_ticks']:
ax.tick_params(axis='x', direction='in', which='both', bottom=False, top=False)
# Set title
if options['title']:
ax.set_title(options['title'], fontsize=plt.rcParams['font.size'])
# Create legend
if ax.get_legend():
ax.get_legend().remove()
if options['legend']:
# Make palette and linestyles from original parameters
if not options['colours']:
colours = generate_colours(palettes=options['palettes'])
else:
colours = itertools.cycle(options['colours'])
markers = itertools.cycle(options['markers'])
# Create legend
active_markers = []
active_labels = []
for label in options['labels']:
# Discard next linestyle and colour if label is _
if label == '_':
_ = next(colours)
_ = next(markers)
else:
active_markers.append(mlines.Line2D([], [], markeredgecolor=next(colours), color=(1, 1, 1, 0), marker=next(markers)))
active_labels.append(label)
ax.legend(active_markers, active_labels, frameon=False, loc=options['legend_position'][0], bbox_to_anchor=options['legend_position'][1], ncol=options['legend_ncol'])
#fig.legend(handles=patches, loc=options['legend_position'][0], bbox_to_anchor=options['legend_position'][1], frameon=False)
# Adjust where the axes start within the figure. Default value is 10% in from the left and bottom edges. Used to make room for the plot within the figure size (to avoid using bbox_inches='tight' in the savefig-command, as this screws with plot dimensions)
plt.subplots_adjust(left=options['subplots_adjust'][0], bottom=options['subplots_adjust'][1], right=options['subplots_adjust'][2], top=options['subplots_adjust'][3])
# If limits for x- and y-axes is passed, sets these.
if options['xlim'] is not None:
ax.set_xlim(options['xlim'])
if options['ylim'] is not None:
ax.set_ylim(options['ylim'])
# Add custom text
if options['text']:
plt.text(x=options['text'][1][0], y=options['text'][1][1], s=options['text'][0])
return fig, ax
def ipywidgets_update(func, plot_data, options={}, **kwargs):
for key in kwargs:
options[key] = kwargs[key]
func(plot_data=plot_data, options=options)
def determine_width(options):
conversion_cm_inch = 0.3937008 # cm to inch
if options['column_type'] == 'single':
column_width = options['single_column_width']
elif options['column_type'] == 'double':
column_width = options['double_column_width']
column_width *= conversion_cm_inch
width_ratio = [float(num) for num in options['width_ratio'].split(':')]
width = column_width * width_ratio[0]/width_ratio[1]
return width
def determine_height(options, width):
aspect_ratio = [float(num) for num in options['aspect_ratio'].split(':')]
height = width/(aspect_ratio[0] / aspect_ratio[1])
return height
def scale_figure(options, width, height):
width = width * options['upscaling_factor'] * options['compress_width']
height = height * options['upscaling_factor'] * options['compress_height']
return width, height
def update_rc_params(rc_params):
''' Update all passed run commands in matplotlib'''
if rc_params:
for key in rc_params.keys():
plt.rcParams.update({key: rc_params[key]})
def generate_colours(palettes):
# Creates a list of all the colours that is passed in the colour_cycles argument. Then makes cyclic iterables of these.
colour_collection = []
for palette in palettes:
mod = importlib.import_module("palettable.colorbrewer.%s" % palette[0])
colour = getattr(mod, palette[1]).mpl_colors
colour_collection = colour_collection + colour
colour_cycle = itertools.cycle(colour_collection)
return colour_cycle