nafuma/beamtime/xrd/io.py

390 lines
11 KiB
Python
Raw Normal View History

2021-10-21 14:41:10 +02:00
import fabio, pyFAI
2021-10-23 18:37:21 +02:00
import pandas as pd
2021-10-21 14:41:10 +02:00
import numpy as np
import os
2021-10-27 15:33:56 +02:00
import shutil
2021-10-21 14:41:10 +02:00
2021-10-25 08:33:58 +02:00
import zipfile
import xml.etree.ElementTree as ET
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
import beamtime.auxillary as aux
2021-10-21 14:41:10 +02:00
def get_image_array(path):
image = fabio.open(path)
image_array = image.data
return image_array
def get_image_headers(path):
image = fabio.open(path)
return image.header
def integrate_1d(data, options={}):
2021-10-23 18:37:21 +02:00
''' Integrates an image file to a 1D diffractogram.
2021-10-21 14:41:10 +02:00
Required content of data:
calibrant (str): path to .poni-file
nbins (int): Number of bins to divide image into
2022-03-16 14:16:41 +01:00
path (str) (optional, dependent on image): path to image file - either this or image must be specified. If both is passed, image is prioritsed
image (NumPy 2D Array) (optional, dependent on path): image array as extracted from get_image_array
2021-10-23 18:37:21 +02:00
Output:
df: DataFrame contianing 1D diffractogram if option 'return' is True
'''
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
required_options = ['unit', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite']
2021-10-23 18:37:21 +02:00
default_options = {
'unit': '2th_deg',
2022-03-16 14:16:41 +01:00
'save': False,
'save_filename': None,
'save_extension': '_integrated.xy',
2021-10-23 18:37:21 +02:00
'save_folder': '.',
2022-03-16 14:16:41 +01:00
'overwrite': False}
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
# Get image array from filename if not passed
if 'image' not in data.keys():
data['image'] = get_image_array(data['path'])
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
# Instanciate the azimuthal integrator from pyFAI from the calibrant (.poni-file)
ai = pyFAI.load(data['calibrant'])
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
# Determine filename
filename = make_filename(data=data, options=options)
# Make save_folder if this does not exist already
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
res = ai.integrate1d(data['image'], data['nbins'], unit=options['unit'], filename=filename)
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
diffractogram = read_xy(filename)
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
if not options['save']:
os.remove(filename)
shutil.rmtree('tmp')
return diffractogram
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
def make_filename(data, options):
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
# Define save location for integrated diffractogram data
if not options['save']:
options['save_folder'] = 'tmp'
filename = os.path.join(options['save_folder'], 'tmp_diff.dat')
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
elif options['save']:
2021-10-21 14:41:10 +02:00
2022-03-16 14:16:41 +01:00
# Case 1: No filename is given.
if not options['save_filename']:
# If a path is given instead of an image array, the path is taken as the trunk of the savename
if data['path']:
# Make filename by joining the save_folder, the filename (with extension deleted) and adding the save_extension
filename = os.path.join(options['save_folder'], os.path.split(data['path'])[-1].split('.')[0] + options['save_extension'])
else:
# Make filename just "integrated.dat" in the save_folder
filename = os.path.join(options['save_folder'], 'integrated.xy')
else:
filename = os.path.join(options['save_folder'], options['save_filename'])
2021-10-23 18:37:21 +02:00
2022-03-16 14:16:41 +01:00
if not options['overwrite']:
trunk = filename.split('.')[0]
extension = filename.split('.')[-1]
counter = 0
while os.path.isfile(filename):
# Rename first file to match naming scheme if already exists
if counter == 0:
os.rename(filename, trunk + '_' + str(counter).zfill(4) + '.' + extension)
# Increment counter and make new filename
counter += 1
counter_string = str(counter)
filename = trunk + '_' + counter_string.zfill(4) + '.' + extension
return filename
2021-10-23 18:37:21 +02:00
2021-10-28 16:47:07 +02:00
def generate_image_list(path, options=None):
''' Generates a list of paths to pass to the average_images() function'''
required_options = ['scans_per_image']
default_options = {
'scans_per_image': 5
}
2021-10-23 18:37:21 +02:00
def average_images(images):
''' Takes a list of path to image files, reads them and averages them before returning the average image'''
image_arrays = []
for image in images:
2021-10-28 16:47:07 +02:00
image_array = xrd.io.get_image_array(image)
2021-10-23 18:37:21 +02:00
image_arrays.append(image_array)
image_arrays = np.array(image_arrays)
image_average = image_arrays.mean(axis=0)
return image_average
def subtract_dark(image, dark):
return image - dark
2021-10-21 14:41:10 +02:00
def view_integrator(calibrant):
''' Prints out information about the azimuthal integrator
Input:
calibrant: Path to the azimuthal integrator file (.PONI)
Output:
None'''
ai = pyFAI.load(calibrant)
print("pyFAI version:", pyFAI.version)
print("\nIntegrator: \n", ai)
2021-10-27 15:33:56 +02:00
def read_brml(path, options=None):
required_options = ['extract_folder', 'save_folder']
2021-10-27 15:33:56 +02:00
default_options = {
'extract_folder': 'temp',
'save_folder': None
}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
if not os.path.isdir(options['extract_folder']):
os.mkdir(options['extract_folder'])
# Extract the RawData0.xml file from the brml-file
with zipfile.ZipFile(path, 'r') as brml:
2021-10-25 08:33:58 +02:00
for info in brml.infolist():
2021-10-27 15:33:56 +02:00
if "RawData" in info.filename:
2021-10-28 16:47:07 +02:00
brml.extract(info.filename, options['extract_folder'])
2021-10-27 15:33:56 +02:00
# Parse the RawData0.xml file
2021-10-28 16:47:07 +02:00
path = os.path.join(options['extract_folder'], 'Experiment0/RawData0.xml')
2021-10-27 15:33:56 +02:00
tree = ET.parse(path)
root = tree.getroot()
shutil.rmtree(options['extract_folder'])
diffractogram = []
for chain in root.findall('./DataRoutes/DataRoute'):
for scantype in chain.findall('ScanInformation/ScanMode'):
if scantype.text == 'StillScan':
if chain.get('Description') == 'Originally measured data.':
for data in chain.findall('Datum'):
data = data.text.split(',')
data = [float(i) for i in data]
twotheta, intensity = float(data[2]), float(data[3])
else:
if chain.get('Description') == 'Originally measured data.':
for data in chain.findall('Datum'):
data = data.text.split(',')
twotheta, intensity = float(data[2]), float(data[3])
if twotheta > 0:
diffractogram.append({'2th': twotheta, 'I': intensity})
2021-10-27 15:33:56 +02:00
diffractogram = pd.DataFrame(diffractogram)
if options['save_folder']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
diffractogram.to_csv(options['save_folder'])
return diffractogram
2022-03-16 15:21:05 +01:00
def read_xy(data, options):
if 'wavelength' not in data.keys():
find_wavelength(data=data, file_ext='xy')
2021-10-27 15:33:56 +02:00
2022-03-16 14:16:41 +01:00
with open(data['path'], 'r') as f:
position = 0
current_line = f.readline()
2022-03-16 14:16:41 +01:00
while current_line[0] == '#' or "\'":
position = f.tell()
current_line = f.readline()
2021-10-25 08:33:58 +02:00
f.seek(position)
diffractogram = pd.read_csv(f, header=None, delim_whitespace=True)
2022-03-16 14:16:41 +01:00
if diffractogram.shape[1] == 2:
diffractogram.columns = ['2th', 'I']
elif diffractogram.shape[1] == 3:
diffractogram.columns = ['2th', 'I', 'sigma']
return diffractogram
def read_data(data, options={}):
2022-03-16 14:16:41 +01:00
beamline_extensions = ['mar3450', 'edf', 'cbf']
file_extension = data['path'].split('.')[-1]
2022-03-16 14:16:41 +01:00
if file_extension in beamline_extensions:
diffractogram = integrate_1d(data=data, options=options)
2022-03-16 14:16:41 +01:00
elif file_extension == 'brml':
2022-03-16 15:21:05 +01:00
diffractogram = read_brml(data=data, options=options)
2022-03-16 14:16:41 +01:00
elif file_extension in['xy', 'xye']:
2022-03-16 15:21:05 +01:00
diffractogram = read_xy(data=data, options=options)
return diffractogram
2021-10-27 15:33:56 +02:00
2022-03-12 22:50:09 +01:00
def load_reflection_table(path):
# VESTA outputs the file with a header that has a space between the parameter and units - so there is some extra code to rectify the issue
# that ensues from this formatting
reflections = pd.read_csv(path, delim_whitespace=True)
# Remove the extra column that appears from the headers issue
reflections.drop(reflections.columns[-1], axis=1, inplace=True)
with open(path, 'r') as f:
line = f.readline()
headers = line.split()
# Delete the fourth element which is '(Å)'
del headers[4]
# Change name of column to avoid using greek letters
headers[7] = '2th'
# Set the new modified headers as the headers of
reflections.columns = headers
2022-03-16 14:16:41 +01:00
return reflections
def translate_wavelengths(diffractogram, wavelength):
# Translate to CuKalpha
cuka = 1.54059 # Å
if cuka > wavelength:
max_2th_cuka = 2*np.arcsin(wavelength/cuka) * 180/np.pi
else:
max_2th_cuka = diffractogram['2th'].max()
diffractogram['2th_cuka'] = np.NAN
diffractogram['2th_cuka'].loc[diffractogram['2th'] <= max_2th_cuka] = 2*np.arcsin(cuka/wavelength * np.sin((diffractogram['2th']/2) * np.pi/180)) * 180/np.pi
# Translate to MoKalpha
moka = 0.71073 # Å
if moka > wavelength:
max_2th_moka = 2*np.arcsin(wavelength/moka) * 180/np.pi
else:
max_2th_moka = diffractogram['2th'].max()
diffractogram['2th_moka'] = np.NAN
diffractogram['2th_moka'].loc[diffractogram['2th'] <= max_2th_moka] = 2*np.arcsin(moka/wavelength * np.sin((diffractogram['2th']/2) * np.pi/180)) * 180/np.pi
# Convert to other parameters
diffractogram['d'] = wavelength / (2*np.sin(2*diffractogram['2th']) * 180/np.pi)
diffractogram['1/d'] = 1/diffractogram['d']
diffractogram['q'] = np.abs((4*np.pi/wavelength)*np.sin(diffractogram['2th']/2 * np.pi/180))
diffractogram['q2'] = diffractogram['q']**2
diffractogram['q4'] = diffractogram['q']**4
2022-03-16 15:21:05 +01:00
def find_wavelength(data, file_ext):
# Find from EVA-exports (.xy)
if file_ext == 'xy':
wavelength_dict = {'Cu': 1.54059, 'Mo': 0.71073}
with open(data['path'], 'r') as f:
lines = f.readlines()
for line in lines:
if 'Anode' in line:
anode = line.split()[8].strip('"')
data['wavelength'] = wavelength_dict[anode]
# Find from .poni-file
if file_ext in ['mar3450', 'edf', 'cbf']:
if 'calibrant' in data.keys():
with open(data['calibrant'], 'r') as f:
lines = f.readlines()
for line in lines:
if 'Wavelength' in line:
data['wavelength'] = float(line.split[-1])
2022-03-16 14:16:41 +01:00