Merge branch 'master' into halvor_xanes

This commit is contained in:
Rasmus Vester Thøgersen 2022-07-07 14:57:48 +02:00 committed by GitHub
commit 28b807c9f9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 662 additions and 261 deletions

View file

@ -1,40 +1,28 @@
from email.policy import default
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import nafuma.auxillary as aux
from sympy import re
def read_data(path, kind, options=None):
def read_data(data, options=None):
if kind == 'neware':
df = read_neware(path)
cycles = process_neware_data(df, options=options)
if data['kind'] == 'neware':
df = read_neware(data['path'])
cycles = process_neware_data(df=df, options=options)
elif kind == 'batsmall':
df = read_batsmall(path)
elif data['kind'] == 'batsmall':
df = read_batsmall(data['path'])
cycles = process_batsmall_data(df=df, options=options)
elif kind == 'biologic':
df = read_biologic(path)
elif data['kind'] == 'biologic':
df = read_biologic(data['path'])
cycles = process_biologic_data(df=df, options=options)
return cycles
def read_batsmall(path):
''' Reads BATSMALL-data into a DataFrame.
Input:
path (required): string with path to datafile
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
df = pd.read_csv(path, skiprows=2, sep='\t')
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return df
def read_neware(path, summary=False):
@ -43,6 +31,8 @@ def read_neware(path, summary=False):
type is .csv, it will just open the datafile and it does not matter if summary is False or not.'''
from xlsx2csv import Xlsx2csv
# FIXME Do a check if a .csv-file already exists even if the .xlsx is passed
# Convert from .xlsx to .csv to make readtime faster
if path.split('.')[-1] == 'xlsx':
csv_details = ''.join(path.split('.')[:-1]) + '_details.csv'
@ -66,6 +56,20 @@ def read_neware(path, summary=False):
return df
def read_batsmall(path):
''' Reads BATSMALL-data into a DataFrame.
Input:
path (required): string with path to datafile
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
df = pd.read_csv(path, skiprows=2, sep='\t')
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return df
def read_biologic(path):
''' Reads Bio-Logic-data into a DataFrame.
@ -76,23 +80,19 @@ def read_biologic(path):
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
with open(path, 'r') as f:
with open(path, 'rb') as f:
lines = f.readlines()
header_lines = int(lines[1].split()[-1]) - 1
df = pd.read_csv(path, sep='\t', skiprows=header_lines)
df = pd.read_csv(path, sep='\t', skiprows=header_lines, encoding='cp1252')
df.dropna(inplace=True, axis=1)
return df
def process_batsmall_data(df, options=None):
''' Takes BATSMALL-data in the form of a DataFrame and cleans the data up and converts units into desired units.
Splits up into individual charge and discharge DataFrames per cycle, and outputs a list where each element is a tuple with the Chg and DChg-data. E.g. cycles[10][0] gives the charge data for the 11th cycle.
@ -111,26 +111,25 @@ def process_batsmall_data(df, options=None):
'''
required_options = ['splice_cycles', 'molecular_weight', 'reverse_discharge', 'units']
default_options = {'splice_cycles': False, 'molecular_weight': None, 'reverse_discharge': False, 'units': None}
default_options = {
'splice_cycles': False,
'molecular_weight': None,
'reverse_discharge': False,
'units': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'batsmall'
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df, kind='batsmall')
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='batsmall')
options['units'] = new_units
set_units(options)
options['old_units'] = get_old_units(df, options)
df = unit_conversion(df=df, options=options)
if options['splice_cycles']:
df = splice_cycles(df=df, kind='batsmall')
df = splice_cycles(df=df, options=options)
# Replace NaN with empty string in the Comment-column and then remove all steps where the program changes - this is due to inconsistent values for current
df[["comment"]] = df[["comment"]].fillna(value={'comment': ''})
@ -173,27 +172,23 @@ def process_batsmall_data(df, options=None):
cycles.append((chg_df, dchg_df))
return cycles
def splice_cycles(df, kind):
def splice_cycles(df, options: dict) -> pd.DataFrame:
''' Splices two cycles together - if e.g. one charge cycle are split into several cycles due to change in parameters.
Incomplete, only accomodates BatSmall so far, and only for charge.'''
if kind == 'batsmall':
if options['kind'] == 'batsmall':
# Creates masks for charge and discharge curves
chg_mask = df['current'] >= 0
dchg_mask = df['current'] < 0
# Get the number of cycles in the dataset
max_count = df["count"].max()
# Loop through all the cycling steps, change the current and capacities in the
# Loop through all the cycling steps, change the current and capacities in the
for i in range(df["count"].max()):
sub_df = df.loc[df['count'] == i+1]
sub_df_chg = sub_df.loc[chg_mask]
#sub_df_dchg = sub_df.loc[dchg_mask]
# get indices where the program changed
chg_indices = sub_df_chg[sub_df_chg["comment"].str.contains("program")==True].index.to_list()
@ -205,35 +200,18 @@ def splice_cycles(df, kind):
if chg_indices:
last_chg = chg_indices.pop()
#dchg_indices = sub_df_dchg[sub_df_dchg["comment"].str.contains("program")==True].index.to_list()
#if dchg_indices:
# del dchg_indices[0]
if chg_indices:
for i in chg_indices:
add = df['specific_capacity'].iloc[i-1]
df['specific_capacity'].iloc[i:last_chg] = df['specific_capacity'].iloc[i:last_chg] + add
#if dchg_indices:
# for i in dchg_indices:
# add = df['specific_capacity'].iloc[i-1]
# df['specific_capacity'].iloc[i:last_dchg] = df['specific_capacity'].iloc[i:last_dchg] + add
return df
def process_neware_data(df, options=None):
def process_neware_data(df, options={}):
""" Takes data from NEWARE in a DataFrame as read by read_neware() and converts units, adds columns and splits into cycles.
@ -245,25 +223,26 @@ def process_neware_data(df, options=None):
molecular_weight: the molar mass (in g mol^-1) of the active material, to calculate the number of ions extracted. Assumes one electron per Li+/Na+-ion """
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
default_options = {
'units': None,
'active_material_weight': None,
'molecular_weight': None,
'reverse_discharge': False,
'splice_cycles': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'neware'
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df=df, kind='neware')
set_units(options=options) # sets options['units']
options['old_units'] = get_old_units(df=df, options=options)
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='neware')
df = add_columns(df=df, options=options) # adds columns to the DataFrame if active material weight and/or molecular weight has been passed in options
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='neware')
options['units'] = new_units
df = unit_conversion(df=df, options=options) # converts all units from the old units to the desired units
# Creates masks for charge and discharge curves
@ -288,6 +267,8 @@ def process_neware_data(df, options=None):
if chg_df.empty and dchg_df.empty:
continue
# Reverses the discharge curve if specified
if options['reverse_discharge']:
max_capacity = dchg_df['capacity'].max()
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
@ -310,35 +291,34 @@ def process_neware_data(df, options=None):
def process_biologic_data(df, options=None):
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
default_options = {
'units': None,
'active_material_weight': None,
'molecular_weight': None,
'reverse_discharge': False,
'splice_cycles': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'biologic'
# Pick out necessary columns
df = df[['Ns changes', 'Ns', 'time/s', 'Ewe/V', 'Energy charge/W.h', 'Energy discharge/W.h', '<I>/mA', 'Capacity/mA.h', 'cycle number']].copy()
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df=df, kind='biologic')
set_units(options)
options['old_units'] = get_old_units(df=df, options=options)
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='biologic')
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='biologic')
options['units'] = new_units
df = add_columns(df=df, options=options)
df = unit_conversion(df=df, options=options)
# Creates masks for charge and discharge curves
chg_mask = (df['status'] == 1) & (df['status_change'] != 1)
dchg_mask = (df['status'] == 2) & (df['status_change'] != 1)
# Initiate cycles list
cycles = []
@ -376,62 +356,62 @@ def process_biologic_data(df, options=None):
return cycles
def add_columns(df, active_material_weight, molecular_weight, old_units, kind):
def add_columns(df, options):
if kind == 'neware':
if active_material_weight:
df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity({})".format(old_units['capacity'])] / (active_material_weight)
if options['kind'] == 'neware':
if options['active_material_weight']:
df["SpecificCapacity({}/mg)".format(options['old_units']["capacity"])] = df["Capacity({})".format(options['old_units']['capacity'])] / (options['active_material_weight'])
if molecular_weight:
if options['molecular_weight']:
faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1
seconds_per_hour = 3600 # s h^-1
f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(options['old_units']['capacity'])]*options['molecular_weight'])*1000/f
if kind == 'biologic':
if active_material_weight:
if options['kind'] == 'biologic':
if options['active_material_weight']:
capacity = old_units['capacity'].split('h')[0] + '.h'
capacity = options['old_units']['capacity'].split('h')[0] + '.h'
df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity/{}".format(capacity)] / (active_material_weight)
df["SpecificCapacity({}/mg)".format(options['old_units']["capacity"])] = df["Capacity/{}".format(capacity)] / (options['active_material_weight'])
if molecular_weight:
if options['molecular_weight']:
faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1
seconds_per_hour = 3600 # s h^-1
f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(options['old_units']['capacity'])]*options['molecular_weight'])*1000/f
return df
def unit_conversion(df, new_units, old_units, kind):
def unit_conversion(df, options):
from . import unit_tables
if kind == 'batsmall':
if options['kind'] == 'batsmall':
df["TT [{}]".format(old_units["time"])] = df["TT [{}]".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']]
df["U [{}]".format(old_units["voltage"])] = df["U [{}]".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']]
df["I [{}]".format(old_units["current"])] = df["I [{}]".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']]
df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] = df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]] / unit_tables.mass()[old_units["mass"]].loc[new_units["mass"]])
df["TT [{}]".format(options['old_units']["time"])] = df["TT [{}]".format(options['old_units']["time"])] * unit_tables.time()[options['old_units']["time"]].loc[options['units']['time']]
df["U [{}]".format(options['old_units']["voltage"])] = df["U [{}]".format(options['old_units']["voltage"])] * unit_tables.voltage()[options['old_units']["voltage"]].loc[options['units']['voltage']]
df["I [{}]".format(options['old_units']["current"])] = df["I [{}]".format(options['old_units']["current"])] * unit_tables.current()[options['old_units']["current"]].loc[options['units']['current']]
df["C [{}/{}]".format(options['old_units']["capacity"], options['old_units']["mass"])] = df["C [{}/{}]".format(options['old_units']["capacity"], options['old_units']["mass"])] * (unit_tables.capacity()[options['old_units']["capacity"]].loc[options['units']["capacity"]] / unit_tables.mass()[options['old_units']["mass"]].loc[options['units']["mass"]])
df.columns = ['time', 'voltage', 'current', 'count', 'specific_capacity', 'comment']
if kind == 'neware':
df['Current({})'.format(old_units['current'])] = df['Current({})'.format(old_units['current'])] * unit_tables.current()[old_units['current']].loc[new_units['current']]
df['Voltage({})'.format(old_units['voltage'])] = df['Voltage({})'.format(old_units['voltage'])] * unit_tables.voltage()[old_units['voltage']].loc[new_units['voltage']]
df['Capacity({})'.format(old_units['capacity'])] = df['Capacity({})'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']]
df['Energy({})'.format(old_units['energy'])] = df['Energy({})'.format(old_units['energy'])] * unit_tables.energy()[old_units['energy']].loc[new_units['energy']]
df['CycleTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_time_string(row['Relative Time(h:min:s.ms)'], unit=new_units['time']), axis=1)
df['RunTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_datetime_string(row['Real Time(h:min:s.ms)'], reference=df['Real Time(h:min:s.ms)'].iloc[0], unit=new_units['time']), axis=1)
if options['kind'] == 'neware':
df['Current({})'.format(options['old_units']['current'])] = df['Current({})'.format(options['old_units']['current'])] * unit_tables.current()[options['old_units']['current']].loc[options['units']['current']]
df['Voltage({})'.format(options['old_units']['voltage'])] = df['Voltage({})'.format(options['old_units']['voltage'])] * unit_tables.voltage()[options['old_units']['voltage']].loc[options['units']['voltage']]
df['Capacity({})'.format(options['old_units']['capacity'])] = df['Capacity({})'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']]
df['Energy({})'.format(options['old_units']['energy'])] = df['Energy({})'.format(options['old_units']['energy'])] * unit_tables.energy()[options['old_units']['energy']].loc[options['units']['energy']]
df['CycleTime({})'.format(options['units']['time'])] = df.apply(lambda row : convert_time_string(row['Relative Time(h:min:s.ms)'], unit=options['units']['time']), axis=1)
df['RunTime({})'.format(options['units']['time'])] = df.apply(lambda row : convert_datetime_string(row['Real Time(h:min:s.ms)'], reference=df['Real Time(h:min:s.ms)'].iloc[0], unit=options['units']['time']), axis=1)
columns = ['status', 'jump', 'cycle', 'steps', 'current', 'voltage', 'capacity', 'energy']
if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]]
if 'SpecificCapacity({}/mg)'.format(options['old_units']['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] = df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']] / unit_tables.mass()['mg'].loc[options['units']["mass"]]
columns.append('specific_capacity')
if 'IonsExtracted' in df.columns:
@ -447,18 +427,18 @@ def unit_conversion(df, new_units, old_units, kind):
df.columns = columns
if kind == 'biologic':
df['time/{}'.format(old_units['time'])] = df["time/{}".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']]
df["Ewe/{}".format(old_units["voltage"])] = df["Ewe/{}".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']]
df["<I>/{}".format(old_units["current"])] = df["<I>/{}".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']]
if options['kind'] == 'biologic':
df['time/{}'.format(options['old_units']['time'])] = df["time/{}".format(options['old_units']["time"])] * unit_tables.time()[options['old_units']["time"]].loc[options['units']['time']]
df["Ewe/{}".format(options['old_units']["voltage"])] = df["Ewe/{}".format(options['old_units']["voltage"])] * unit_tables.voltage()[options['old_units']["voltage"]].loc[options['units']['voltage']]
df["<I>/{}".format(options['old_units']["current"])] = df["<I>/{}".format(options['old_units']["current"])] * unit_tables.current()[options['old_units']["current"]].loc[options['units']['current']]
capacity = old_units['capacity'].split('h')[0] + '.h'
df["Capacity/{}".format(capacity)] = df["Capacity/{}".format(capacity)] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]])
capacity = options['old_units']['capacity'].split('h')[0] + '.h'
df["Capacity/{}".format(capacity)] = df["Capacity/{}".format(capacity)] * (unit_tables.capacity()[options['old_units']["capacity"]].loc[options['units']["capacity"]])
columns = ['status_change', 'status', 'time', 'voltage', 'energy_charge', 'energy_discharge', 'current', 'capacity', 'cycle']
if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]]
if 'SpecificCapacity({}/mg)'.format(options['old_units']['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] = df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']] / unit_tables.mass()['mg'].loc[options['units']["mass"]]
columns.append('specific_capacity')
if 'IonsExtracted' in df.columns:
@ -469,38 +449,43 @@ def unit_conversion(df, new_units, old_units, kind):
return df
def set_units(units=None):
def set_units(options: dict) -> None:
# Complete the list of units - if not all are passed, then default value will be used
required_units = ['time', 'current', 'voltage', 'capacity', 'mass', 'energy', 'specific_capacity']
default_units = {'time': 'h', 'current': 'mA', 'voltage': 'V', 'capacity': 'mAh', 'mass': 'g', 'energy': 'mWh', 'specific_capacity': None}
if not units:
units = default_units
if units:
for unit in required_units:
if unit not in units.keys():
units[unit] = default_units[unit]
units['specific_capacity'] = r'{} {}'.format(units['capacity'], units['mass']) + '$^{-1}$'
return units
def get_old_units(df, kind):
if kind=='batsmall':
default_units = {
'time': 'h',
'current': 'mA',
'voltage': 'V',
'capacity': 'mAh',
'mass': 'g',
'energy': 'mWh',
'specific_capacity': None}
if not options['units']:
options['units'] = default_units
aux.update_options(options=options['units'], required_options=required_units, default_options=default_units)
options['units']['specific_capacity'] = r'{} {}'.format(options['units']['capacity'], options['units']['mass']) + '$^{-1}$'
def get_old_units(df: pd.DataFrame, options: dict) -> dict:
''' Reads a DataFrame with cycling data and determines which units have been used and returns these in a dictionary'''
if options['kind'] == 'batsmall':
time = df.columns[0].split()[-1].strip('[]')
voltage = df.columns[1].split()[-1].strip('[]')
current = df.columns[2].split()[-1].strip('[]')
capacity, mass = df.columns[4].split()[-1].strip('[]').split('/')
old_units = {'time': time, 'current': current, 'voltage': voltage, 'capacity': capacity, 'mass': mass}
if kind=='neware':
if options['kind']=='neware':
for column in df.columns:
if 'Voltage' in column:
voltage = column.split('(')[-1].strip(')')
@ -514,7 +499,7 @@ def get_old_units(df, kind):
old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy}
if kind=='biologic':
if options['kind'] == 'biologic':
for column in df.columns:
if 'time' in column:
@ -530,8 +515,6 @@ def get_old_units(df, kind):
old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy, 'time': time}
return old_units
def convert_time_string(time_string, unit='ms'):

View file

@ -5,59 +5,120 @@ import pandas as pd
import numpy as np
import math
import ipywidgets as widgets
from IPython.display import display
import nafuma.electrochemistry as ec
import nafuma.plotting as btp
import nafuma.auxillary as aux
def plot_gc(path, kind, options=None):
# Prepare plot, and read and process data
fig, ax = prepare_gc_plot(options=options)
cycles = ec.io.read_data(path=path, kind=kind, options=options)
def plot_gc(data, options=None):
# Update options
required_options = ['x_vals', 'y_vals', 'which_cycles', 'chg', 'dchg', 'colours', 'differentiate_charge_discharge', 'gradient']
default_options = {'x_vals': 'capacity', 'y_vals': 'voltage', 'which_cycles': 'all', 'chg': True, 'dchg': True, 'colours': None, 'differentiate_charge_discharge': True, 'gradient': False}
required_options = ['x_vals', 'y_vals', 'which_cycles', 'charge', 'discharge', 'colours', 'differentiate_charge_discharge', 'gradient', 'interactive', 'interactive_session_active', 'rc_params', 'format_params']
default_options = {
'x_vals': 'capacity', 'y_vals': 'voltage',
'which_cycles': 'all',
'charge': True, 'discharge': True,
'colours': None,
'differentiate_charge_discharge': True,
'gradient': False,
'interactive': False,
'interactive_session_active': False,
'rc_params': {},
'format_params': {}}
options = update_options(options=options, required_options=required_options, default_options=default_options)
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not 'cycles' in data.keys():
data['cycles'] = ec.io.read_data(data=data, options=options)
# Update list of cycles to correct indices
update_cycles_list(cycles=cycles, options=options)
update_cycles_list(cycles=data['cycles'], options=options)
colours = generate_colours(cycles=cycles, options=options)
colours = generate_colours(cycles=data['cycles'], options=options)
if options['interactive']:
options['interactive'], options['interactive_session_active'] = False, True
plot_gc_interactive(data=data, options=options)
return
for i, cycle in enumerate(cycles):
# Prepare plot, and read and process data
fig, ax = btp.prepare_plot(options=options)
for i, cycle in enumerate(data['cycles']):
if i in options['which_cycles']:
if options['chg']:
if options['charge']:
cycle[0].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][0])
if options['dchg']:
if options['discharge']:
cycle[1].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][1])
fig, ax = prettify_gc_plot(fig=fig, ax=ax, options=options)
return cycles, fig, ax
def update_options(options, required_options, default_options):
if not options:
options = default_options
if options['interactive_session_active']:
update_labels(options, force=True)
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
update_labels(options)
return options
fig, ax = btp.adjust_plot(fig=fig, ax=ax, options=options)
#if options['interactive_session_active']:
def update_cycles_list(cycles, options):
if not options:
options['which_cycles']
return data['cycles'], fig, ax
def plot_gc_interactive(data, options):
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_gc), data=widgets.fixed(data), options=widgets.fixed(options),
charge=widgets.ToggleButton(value=True),
discharge=widgets.ToggleButton(value=True),
x_vals=widgets.Dropdown(options=['specific_capacity', 'capacity', 'ions', 'voltage', 'time', 'energy'], value='specific_capacity', description='X-values')
)
options['widget'] = w
display(w)
def update_labels(options, force=False):
if 'xlabel' not in options.keys() or force:
options['xlabel'] = options['x_vals'].capitalize().replace('_', ' ')
if 'ylabel' not in options.keys() or force:
options['ylabel'] = options['y_vals'].capitalize().replace('_', ' ')
if 'xunit' not in options.keys() or force:
if options['x_vals'] == 'capacity':
options['xunit'] = options['units']['capacity']
elif options['x_vals'] == 'specific_capacity':
options['xunit'] = f"{options['units']['capacity']} {options['units']['mass']}$^{{-1}}$"
elif options['x_vals'] == 'time':
options['xunit'] = options['units']['time']
elif options['x_vals'] == 'ions':
options['xunit'] = None
if 'yunit' not in options.keys() or force:
if options['y_vals'] == 'voltage':
options['yunit'] = options['units']['voltage']
def update_cycles_list(cycles, options: dict) -> None:
if options['which_cycles'] == 'all':
options['which_cycles'] = [i for i in range(len(cycles))]
@ -81,52 +142,6 @@ def update_cycles_list(cycles, options):
options['which_cycles'] = [i-1 for i in range(which_cycles[0], which_cycles[1]+1)]
return options
def prepare_gc_plot(options=None):
# First take care of the options for plotting - set any values not specified to the default values
required_options = ['columns', 'width', 'height', 'format', 'dpi', 'facecolor']
default_options = {'columns': 1, 'width': 14, 'format': 'golden_ratio', 'dpi': None, 'facecolor': 'w'}
# If none are set at all, just pass the default_options
if not options:
options = default_options
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
options['figsize'] = (options['width'], options['height'])
# If options is passed, go through to fill out the rest.
else:
# Start by setting the width:
if 'width' not in options.keys():
options['width'] = default_options['width']
# Then set height - check options for format. If not given, set the height to the width scaled by the golden ratio - if the format is square, set the same. This should possibly allow for the tweaking of custom ratios later.
if 'height' not in options.keys():
if 'format' not in options.keys():
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
elif options['format'] == 'square':
options['height'] = options['width']
options['figsize'] = (options['width'], options['height'])
# After height and width are set, go through the rest of the options to make sure that all the required options are filled
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
fig, ax = plt.subplots(figsize=(options['figsize']), dpi=options['dpi'], facecolor=options['facecolor'])
linewidth = 1*options['columns']
axeswidth = 3*options['columns']
plt.rc('lines', linewidth=linewidth)
plt.rc('axes', linewidth=axeswidth)
return fig, ax
def prettify_gc_plot(fig, ax, options=None):
@ -161,12 +176,12 @@ def prettify_gc_plot(fig, ax, options=None):
'positions': {'xaxis': 'bottom', 'yaxis': 'left'},
'x_vals': 'specific_capacity', 'y_vals': 'voltage',
'xlabel': None, 'ylabel': None,
'units': None,
'units': {'capacity': 'mAh', 'specific_capacity': r'mAh g$^{-1}$', 'time': 's', 'current': 'mA', 'energy': 'mWh', 'mass': 'g', 'voltage': 'V'},
'sizes': None,
'title': None
}
update_options(options, required_options, default_options)
aux.update_options(options, required_options, default_options)
##################################################################

View file

@ -135,7 +135,10 @@ def adjust_plot(fig, ax, options):
ax.set_ylabel('')
if not options['hide_x_labels']:
ax.set_xlabel(f'{options["xlabel"]}')
if not options['xunit']:
ax.set_xlabel(f'{options["xlabel"]}')
else:
ax.set_xlabel(f'{options["xlabel"]} [{options["xunit"]}]')
else:
ax.set_xlabel('')

View file

@ -5,6 +5,7 @@ import numpy as np
import os
import matplotlib.pyplot as plt
import nafuma.auxillary as aux
import nafuma.plotting as btp
import nafuma.xanes as xas
import nafuma.xanes.io as io
@ -14,6 +15,7 @@ import ipywidgets as widgets
from IPython.display import display
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
#Trying to make a function that can decide which edge it is based on the first ZapEnergy-value
@ -249,7 +251,6 @@ def pre_edge_subtraction(data: dict, options={}):
def post_edge_fit(data: dict, options={}):
''' Fit the post edge within the post_edge.limits to a polynomial of post_edge.polyorder order. Allows interactive plotting, as well as showing static plots and saving plots to drive.
@ -258,6 +259,7 @@ def post_edge_fit(data: dict, options={}):
required_options = ['log', 'logfile', 'post_edge_masks', 'post_edge_limits', 'post_edge_polyorder', 'post_edge_store_data', 'interactive', 'interactive_session_active', 'show_plots', 'save_plots', 'save_folder']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_post_edge_fit.log',
@ -338,6 +340,7 @@ def post_edge_fit(data: dict, options={}):
#adding a new column in df_background with the y-values of the background
post_edge_fit_data.insert(1,filename,background)
if options['save_plots'] or options['show_plots']:

View file

@ -6,11 +6,9 @@ import nafuma.auxillary as aux
from nafuma.xanes.calib import find_element
import datetime
def split_scan_data(data: dict, options={}) -> list:
''' Splits a XANES-file from BM31 into different files depending on the edge. Has the option to add intensities of all scans of same edge into the same file.
As of now only picks out xmap_rois (fluoresence mode) and for Mn, Fe, Co and Ni K-edges.'''
required_options = ['log', 'logfile', 'save', 'save_folder', 'replace', 'active_roi', 'add_rois', 'return']

View file

@ -40,12 +40,13 @@ def integrate_1d(data, options={}, index=0):
df: DataFrame contianing 1D diffractogram if option 'return' is True
'''
required_options = ['unit', 'nbins', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite', 'extract_folder']
required_options = ['unit', 'npt', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite', 'extract_folder', 'error_model']
default_options = {
'unit': '2th_deg',
'nbins': 3000,
'npt': 3000,
'extract_folder': 'tmp',
'error_model': None,
'save': False,
'save_filename': None,
'save_extension': '_integrated.xy',
@ -59,9 +60,17 @@ def integrate_1d(data, options={}, index=0):
# Get image array from filename if not passed
if 'image' not in data.keys():
if 'image' not in data.keys() or not data['image']:
data['image'] = get_image_array(data['path'][index])
# Load mask
if 'mask' in data.keys():
mask = get_image_array(data['mask'])
else:
mask = None
# Instanciate the azimuthal integrator from pyFAI from the calibrant (.poni-file)
ai = pyFAI.load(data['calibrant'])
@ -72,11 +81,17 @@ def integrate_1d(data, options={}, index=0):
if not os.path.isdir(options['extract_folder']):
os.makedirs(options['extract_folder'])
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
res = ai.integrate1d(data['image'], options['nbins'], unit=options['unit'], filename=filename)
res = ai.integrate1d(data['image'], npt=options['npt'], mask=mask, error_model=options['error_model'], unit=options['unit'], filename=filename)
data['path'][index] = filename
diffractogram, wavelength = read_xy(data=data, options=options, index=index)
diffractogram, _ = read_xy(data=data, options=options, index=index)
wavelength = find_wavelength_from_poni(path=data['calibrant'])
if not options['save']:
os.remove(filename)
@ -278,8 +293,12 @@ def read_brml(data, options={}, index=0):
#if 'wavelength' not in data.keys():
# Find wavelength
for chain in root.findall('./FixedInformation/Instrument/PrimaryTracks/TrackInfoData/MountedOptics/InfoData/Tube/WaveLengthAlpha1'):
wavelength = float(chain.attrib['Value'])
if not data['wavelength'][index]:
for chain in root.findall('./FixedInformation/Instrument/PrimaryTracks/TrackInfoData/MountedOptics/InfoData/Tube/WaveLengthAlpha1'):
wavelength = float(chain.attrib['Value'])
else:
wavelength = data['wavelength'][index]
diffractogram = pd.DataFrame(diffractogram)
@ -302,7 +321,11 @@ def read_xy(data, options={}, index=0):
#if 'wavelength' not in data.keys():
# Get wavelength from scan
wavelength = find_wavelength_from_xy(path=data['path'][index])
if not 'wavelength' in data.keys() or data['wavelength'][index]:
wavelength = find_wavelength_from_xy(path=data['path'][index])
else:
wavelength = data['wavelength'][index]
with open(data['path'][index], 'r') as f:
position = 0
@ -326,6 +349,38 @@ def read_xy(data, options={}, index=0):
return diffractogram, wavelength
def strip_headers_from_xy(path: str, filename=None) -> None:
''' Strips headers from a .xy-file'''
xy = []
with open(path, 'r') as f:
lines = f.readlines()
headerlines = 0
for line in lines:
if line[0] == '#':
headerlines += 1
else:
xy.append(line)
if not filename:
ext = path.split('.')[-1]
filename = path.split(f'.{ext}')[0] + f'_noheaders.{ext}'
with open(filename, 'w') as f:
for line in xy:
f.write(line)
def read_data(data, options={}, index=0):
beamline_extensions = ['mar3450', 'edf', 'cbf']
@ -342,7 +397,7 @@ def read_data(data, options={}, index=0):
if options['offset'] or options['normalise']:
# Make copy of the original intensities before any changes are made through normalisation or offset, to easily revert back if need to update.
diffractogram['I_org'] = diffractogram['I']
@ -351,6 +406,7 @@ def read_data(data, options={}, index=0):
diffractogram = apply_offset(diffractogram, wavelength, index, options)
diffractogram = translate_wavelengths(data=diffractogram, wavelength=wavelength)
return diffractogram, wavelength
@ -470,7 +526,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th_cuka'] = np.NAN
data['2th_cuka'].loc[data['2th'] <= max_2th_cuka] = 2*np.arcsin(cuka/wavelength * np.sin((data['2th']/2) * np.pi/180)) * 180/np.pi
data['2th_cuka'].loc[data['2th'] <= max_2th_cuka] = 2*np.arcsin(cuka/wavelength * np.sin((data['2th'].loc[data['2th'] <= max_2th_cuka]/2) * np.pi/180)) * 180/np.pi
# Translate to MoKalpha
moka = 0.71073 # Å
@ -482,7 +538,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th_moka'] = np.NAN
data['2th_moka'].loc[data['2th'] <= max_2th_moka] = 2*np.arcsin(moka/wavelength * np.sin((data['2th']/2) * np.pi/180)) * 180/np.pi
data['2th_moka'].loc[data['2th'] <= max_2th_moka] = 2*np.arcsin(moka/wavelength * np.sin((data['2th'].loc[data['2th'] <= max_2th_moka]/2) * np.pi/180)) * 180/np.pi
# Convert to other parameters
@ -501,7 +557,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th'] = np.NAN
data['2th'].loc[data['2th_cuka'] <= max_2th] = 2*np.arcsin(to_wavelength/cuka * np.sin((data['2th_cuka']/2) * np.pi/180)) * 180/np.pi
data['2th'].loc[data['2th_cuka'] <= max_2th] = 2*np.arcsin(to_wavelength/cuka * np.sin((data['2th_cuka'].loc[data['2th_cuka'] <= max_2th]/2) * np.pi/180)) * 180/np.pi
@ -528,6 +584,22 @@ def find_wavelength_from_xy(path):
elif 'Wavelength' in line:
wavelength = float(line.split()[2])*10**10
else:
wavelength = None
return wavelength
def find_wavelength_from_poni(path):
with open(path, 'r') as f:
lines = f.readlines()
for line in lines:
if 'Wavelength' in line:
wavelength = float(line.split()[-1])*10**10
return wavelength

View file

@ -13,7 +13,6 @@ import nafuma.xrd as xrd
import nafuma.auxillary as aux
import nafuma.plotting as btp
def plot_diffractogram(data, options={}):
''' Plots a diffractogram.
@ -67,7 +66,14 @@ def plot_diffractogram(data, options={}):
if not 'diffractogram' in data.keys():
# Initialise empty list for diffractograms and wavelengths
data['diffractogram'] = [None for _ in range(len(data['path']))]
data['wavelength'] = [None for _ in range(len(data['path']))]
# If wavelength is not manually passed it should be automatically gathered from the .xy-file
if 'wavelength' not in data.keys():
data['wavelength'] = [None for _ in range(len(data['path']))]
else:
# If only a single value is passed it should be set to be the same for all diffractograms passed
if not isinstance(data['wavelength'], list):
data['wavelength'] = [data['wavelength'] for _ in range(len(data['path']))]
for index in range(len(data['path'])):
diffractogram, wavelength = xrd.io.read_data(data=data, options=options, index=index)
@ -75,6 +81,9 @@ def plot_diffractogram(data, options={}):
data['diffractogram'][index] = diffractogram
data['wavelength'][index] = wavelength
# FIXME This is a quick fix as the image is not reloaded when passing multiple beamline datasets
data['image'] = None
# Sets the xlim if this has not bee specified
if not options['xlim']:
options['xlim'] = [data['diffractogram'][0][options['x_vals']].min(), data['diffractogram'][0][options['x_vals']].max()]
@ -114,7 +123,7 @@ def plot_diffractogram(data, options={}):
options['reflections_data'] = [options['reflections_data']]
# Determine number of subplots and height ratios between them
if len(options['reflections_data']) >= 1:
if options['reflections_data'] and len(options['reflections_data']) >= 1:
options = determine_grid_layout(options=options)
@ -331,10 +340,10 @@ def plot_diffractogram_interactive(data, options):
'heatmap_default': {'min': xminmax['heatmap'][0], 'max': xminmax['heatmap'][1], 'value': [xminmax['heatmap'][0], xminmax['heatmap'][1]], 'step': 10}
},
'ylim': {
'w': widgets.FloatRangeSlider(value=[yminmax['start'][2], yminmax['start'][3]], min=yminmax['start'][0], max=yminmax['start'][1], step=0.5, layout=widgets.Layout(width='95%')),
'w': widgets.FloatRangeSlider(value=[yminmax['start'][2], yminmax['start'][3]], min=yminmax['start'][0], max=yminmax['start'][1], step=0.01, layout=widgets.Layout(width='95%')),
'state': 'heatmap' if options['heatmap'] else 'diff',
'diff_default': {'min': yminmax['diff'][0], 'max': yminmax['diff'][1], 'value': [yminmax['diff'][2], yminmax['diff'][3]], 'step': 0.1},
'heatmap_default': {'min': yminmax['heatmap'][0], 'max': yminmax['heatmap'][1], 'value': [yminmax['heatmap'][0], yminmax['heatmap'][1]], 'step': 0.1}
'diff_default': {'min': yminmax['diff'][0], 'max': yminmax['diff'][1], 'value': [yminmax['diff'][2], yminmax['diff'][3]], 'step': 0.01},
'heatmap_default': {'min': yminmax['heatmap'][0], 'max': yminmax['heatmap'][1], 'value': [yminmax['heatmap'][0], yminmax['heatmap'][1]], 'step': 0.01}
}
}
@ -356,7 +365,12 @@ def plot_diffractogram_interactive(data, options):
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_diffractogram), data=widgets.fixed(data), options=widgets.fixed(options),
scatter=widgets.ToggleButton(value=False),
line=widgets.ToggleButton(value=True),
xlim=options['widgets']['xlim']['w'])
heatmap=widgets.ToggleButton(value=options['heatmap']),
x_vals=widgets.Dropdown(options=['2th', 'd', '1/d', 'q', 'q2', 'q4', '2th_cuka', '2th_moka'], value='2th', description='X-values'),
xlim=options['widgets']['xlim']['w'],
ylim=options['widgets']['ylim']['w'],
offset_y=widgets.BoundedFloatText(value=options['offset_y'], min=-5, max=5, step=0.01, description='offset_y'),
offset_x=widgets.BoundedFloatText(value=options['offset_x'], min=-1, max=1, step=0.01, description='offset_x'))
options['widget'] = w