Merge branch 'master' into halvor_xanes

This commit is contained in:
Rasmus Vester Thøgersen 2022-07-07 14:57:48 +02:00 committed by GitHub
commit 28b807c9f9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
18 changed files with 662 additions and 261 deletions

20
docs/Makefile Normal file
View file

@ -0,0 +1,20 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SOURCEDIR = .
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

9
docs/about.md Normal file
View file

@ -0,0 +1,9 @@
# About
This package contains data processing, analysis and viewing tools written in Python for several different activities related to inorganic materials chemistry conducted in the NAFUMA-group at the University of Oslo. It is written with the intention of creating a reproducible workflow for documentation purposes, with a focus on interactivity in the data exploration process.
As of now (08-04-22), the intention is to include tools for XRD-, XANES- and electrochemistry-analysis, however other modules might be added as well.

57
docs/conf.py Normal file
View file

@ -0,0 +1,57 @@
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
# -- Project information -----------------------------------------------------
project = 'NAFUMA'
copyright = '2022, Rasmus Vester Thøgersen & Halvor Høen Hval'
author = 'Rasmus Vester Thøgersen & Halvor Høen Hval'
# The full version, including alpha/beta/rc tags
release = '0.2'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = ['myst_parser']
source_suffix = ['.rst', '.md']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
html_sidebars = {'**': ['globaltoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html']}

22
docs/index.rst Normal file
View file

@ -0,0 +1,22 @@
.. NAFUMA documentation master file, created by
sphinx-quickstart on Fri Apr 8 15:32:14 2022.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
Welcome to NAFUMA's documentation!
==================================
.. toctree::
:maxdepth: 2
:caption: Contents:
about
installation
modules/modules
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

25
docs/installation.md Normal file
View file

@ -0,0 +1,25 @@
# Installation
This package is not available on any package repositories, but can be installed by cloning the repository from GitHub and installing via ```pip install``` from the root folder:
```
$ git clone git@github.com:rasmusthog/nafuma.git
$ cd nafuma
$ pip install .
```
If you are planning on making changes to the code base, you might want to consider installing it in develop-mode in order for changes to take effect without reinstalling by including the ```-e``` flag:
```
pip install -e .
```
As of now (v0.2, 08-04-22), the installer will not install any dependencies. It is recommended that you use `conda` to create an environment from `environment.yml` in the root folder:
```
$ conda env create --name <your_environment_name_here> --file environment.yml
$ conda activate <your_environment_name_here>
```
(remember to also get rid of <> when substituting your environment name).
This should get you up and running!

35
docs/make.bat Normal file
View file

@ -0,0 +1,35 @@
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=.
set BUILDDIR=_build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.https://www.sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd

View file

@ -0,0 +1,3 @@
# Electrochemistry
This is a placeholder

12
docs/modules/modules.rst Normal file
View file

@ -0,0 +1,12 @@
Modules
==================================
.. toctree::
:maxdepth: 1
:caption: Contents
xrd.md
xanes.md
electrochemistry.md

1
docs/modules/xanes.md Normal file
View file

@ -0,0 +1 @@
# XANES

130
docs/modules/xrd.md Normal file
View file

@ -0,0 +1,130 @@
# XRD
This module contains functions to view diffractogram data from several different sources. The Some features include:
- Allows the user to plot the data in wavelength independent parameters (d, 1/d, q, q{math}`^2`, q{math}`^4`), or translated to CuK{math}`\alpha` or MoK{math}`\alpha` allowing comparison between diffractograms obtained with different wavelengths
- Plotting in interactive mode within Jupyter Notebook using the `ipywidgets`-package allowing real-time change of (certain) parameters
- Plotting reflection ticks and/or reflection indices from multiple simulated reflection tables (generated by VESTA) for comparison
- Plotting series of diffractograms in stacked mode (including ability to rotate the view for a 3D-view) or as a heatmap
## 1 Compatible file formats
The module is partially built as a wrapper around [pyFAI](https://github.com/silx-kit/pyFAI) (Fast Azimuthal Integrator) developed at the ESRF for integrating 2D diffractograms from the detectors they have. Given a suitable calibration file (`.poni`), the XRD-module will automatically integrate any file pyFAI can integrate. Upon running in interactive mode, the integration is only done once, but it is advised to perform integration of many diffractograms in a separate processing step and saving the results as `.xy`-files, as the integration will run again each time the function is called.
In addition to this, it can also read the `.brml`-files produced by Bruker-instruments in the RECX-lab at the University of Oslo.
## 2 Basic usage
Plotting diffractograms is done by calling the `xrd.plot.plot_diffractogram()`-function, which takes two dictionaries as arguments: `data`, containing all data specific information and `options` which allows customisation of a range of different parameters. The `options`-argument is optional, and the function will contains a bunch of default values to make an as good plot as possible to begin with.
**Example #1: Single diffractogram**
```py
import nafuma.xrd as xrd
data = {
'path': 'path/to/data/diffractogram.brml'
}
options = {
'reflections_data': [
{'path': 'reflections_phase_1.txt', 'min_alpha': 0.1, 'reflection_indices': 4, 'label': 'Phase 1', 'text_colour': 'black'},
{'path': 'reflections_phase_2.txt', 'min_alpha': 0.1, 'reflections_indices': 4, 'label': 'Phase 2', 'text_colour': 'red'}
],
'hide_y_ticklabels': True,
'hide_y_ticks': True
}
diff, fig, ax = xrd.plot.plot_diffractogram(data=data, options=options)
```
The return value `diff` is a list containing one `pandas.DataFrame` per diffractogram passed, in the above example only one. `fig` and `ax` are `matplotlib.pyplot.Figure`- and `matplotlib.pyplot.Axes`-objects, respectively.
**Example #2: 2D diffractogram from ESRF requiring integration**
```py
import nafuma.xrd as xrd
data = {
'path': 'path/to/data/2d_diffractogram.edf',
'calibrant': 'path/to/calibrant/calibrant.poni',
'nbins': 3000
}
diff, _ = xrd.plot.plot_diffractogram(data=data, options=options)
```
In this case we did not specify any options and will thus only use default values, and we stored both `fig` and `ax` in the variable `_` as we do not intend to use these.
**Example #3: Plotting with interactive mode**
This will can be done within a Jupyter Notebook, and will allow the user to tweak certain parameters real-time instead of having to recall the function every time.
```py
import nafuma.xrd as xrd
data = {
'path': 'path/to/data/diffractogram.brml'
}
options = {
'interactive': True
}
diff, _ = xrd.plot.plot_diffractogram(data=data, options=options)
```
**Example #4: Plotting multiple diffractograms as stacked plots**
Instead of passing just a string, you can pass a lsit of filenames. This will be plotted sequentially, with offsets, if desired (`offset_x` and `offset_y`). Default values of `offset_y` is 1 if less than 10 diffractograms have been passed, and 0.1 if more than 10 diffractograms are passed. When plotting series data (e.g. from *in situ* or *operando* measurements), a smaller offset is suitable. Keep in mind that these values only makes sense when the diffractograms are normalised (`'normalise': True`) - if not, the default offsets will be way too small to be noticeable.
```py
import nafuma.xrd as xrd
data = {
'path': ['path/to/data/diffractogram_1.brml', 'path/to/data/diffractogram_2.brml']
}
options = {
'offset_y': 0.1,
'offset_x': 0.05,
}
diff, _ = xrd.plot.plot_diffractogram(data=data, options=options)
```
**Example #5: Plotting series data as heatmap**
This differs very little from above, except that heatmaps are probably nonesense if not used on series data, and that you don't want offset in heatmaps.
```py
import nafuma.xrd as xrd
list_of_data = ['data_1.brml', 'data_2.brml'. ...., 'data_n.brml']
data = {
'path': lists_of_data
}
options = {
'heatmap': True
}
diff, _ = xrd.plot.plot_diffractogram(data=data, options=options)
```

View file

@ -1,40 +1,28 @@
from email.policy import default
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import nafuma.auxillary as aux
from sympy import re
def read_data(path, kind, options=None):
def read_data(data, options=None):
if kind == 'neware':
df = read_neware(path)
cycles = process_neware_data(df, options=options)
if data['kind'] == 'neware':
df = read_neware(data['path'])
cycles = process_neware_data(df=df, options=options)
elif kind == 'batsmall':
df = read_batsmall(path)
elif data['kind'] == 'batsmall':
df = read_batsmall(data['path'])
cycles = process_batsmall_data(df=df, options=options)
elif kind == 'biologic':
df = read_biologic(path)
elif data['kind'] == 'biologic':
df = read_biologic(data['path'])
cycles = process_biologic_data(df=df, options=options)
return cycles
def read_batsmall(path):
''' Reads BATSMALL-data into a DataFrame.
Input:
path (required): string with path to datafile
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
df = pd.read_csv(path, skiprows=2, sep='\t')
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return df
def read_neware(path, summary=False):
@ -43,6 +31,8 @@ def read_neware(path, summary=False):
type is .csv, it will just open the datafile and it does not matter if summary is False or not.'''
from xlsx2csv import Xlsx2csv
# FIXME Do a check if a .csv-file already exists even if the .xlsx is passed
# Convert from .xlsx to .csv to make readtime faster
if path.split('.')[-1] == 'xlsx':
csv_details = ''.join(path.split('.')[:-1]) + '_details.csv'
@ -66,6 +56,20 @@ def read_neware(path, summary=False):
return df
def read_batsmall(path):
''' Reads BATSMALL-data into a DataFrame.
Input:
path (required): string with path to datafile
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
df = pd.read_csv(path, skiprows=2, sep='\t')
df = df.loc[:, ~df.columns.str.contains('^Unnamed')]
return df
def read_biologic(path):
''' Reads Bio-Logic-data into a DataFrame.
@ -76,23 +80,19 @@ def read_biologic(path):
Output:
df: pandas DataFrame containing the data as-is, but without additional NaN-columns.'''
with open(path, 'r') as f:
with open(path, 'rb') as f:
lines = f.readlines()
header_lines = int(lines[1].split()[-1]) - 1
df = pd.read_csv(path, sep='\t', skiprows=header_lines)
df = pd.read_csv(path, sep='\t', skiprows=header_lines, encoding='cp1252')
df.dropna(inplace=True, axis=1)
return df
def process_batsmall_data(df, options=None):
''' Takes BATSMALL-data in the form of a DataFrame and cleans the data up and converts units into desired units.
Splits up into individual charge and discharge DataFrames per cycle, and outputs a list where each element is a tuple with the Chg and DChg-data. E.g. cycles[10][0] gives the charge data for the 11th cycle.
@ -111,26 +111,25 @@ def process_batsmall_data(df, options=None):
'''
required_options = ['splice_cycles', 'molecular_weight', 'reverse_discharge', 'units']
default_options = {'splice_cycles': False, 'molecular_weight': None, 'reverse_discharge': False, 'units': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
default_options = {
'splice_cycles': False,
'molecular_weight': None,
'reverse_discharge': False,
'units': None}
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'batsmall'
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df, kind='batsmall')
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='batsmall')
options['units'] = new_units
set_units(options)
options['old_units'] = get_old_units(df, options)
df = unit_conversion(df=df, options=options)
if options['splice_cycles']:
df = splice_cycles(df=df, kind='batsmall')
df = splice_cycles(df=df, options=options)
# Replace NaN with empty string in the Comment-column and then remove all steps where the program changes - this is due to inconsistent values for current
df[["comment"]] = df[["comment"]].fillna(value={'comment': ''})
@ -173,27 +172,23 @@ def process_batsmall_data(df, options=None):
cycles.append((chg_df, dchg_df))
return cycles
def splice_cycles(df, kind):
def splice_cycles(df, options: dict) -> pd.DataFrame:
''' Splices two cycles together - if e.g. one charge cycle are split into several cycles due to change in parameters.
if kind == 'batsmall':
Incomplete, only accomodates BatSmall so far, and only for charge.'''
if options['kind'] == 'batsmall':
# Creates masks for charge and discharge curves
chg_mask = df['current'] >= 0
dchg_mask = df['current'] < 0
# Get the number of cycles in the dataset
max_count = df["count"].max()
# Loop through all the cycling steps, change the current and capacities in the
for i in range(df["count"].max()):
sub_df = df.loc[df['count'] == i+1]
sub_df_chg = sub_df.loc[chg_mask]
#sub_df_dchg = sub_df.loc[dchg_mask]
# get indices where the program changed
chg_indices = sub_df_chg[sub_df_chg["comment"].str.contains("program")==True].index.to_list()
@ -206,34 +201,17 @@ def splice_cycles(df, kind):
if chg_indices:
last_chg = chg_indices.pop()
#dchg_indices = sub_df_dchg[sub_df_dchg["comment"].str.contains("program")==True].index.to_list()
#if dchg_indices:
# del dchg_indices[0]
if chg_indices:
for i in chg_indices:
add = df['specific_capacity'].iloc[i-1]
df['specific_capacity'].iloc[i:last_chg] = df['specific_capacity'].iloc[i:last_chg] + add
#if dchg_indices:
# for i in dchg_indices:
# add = df['specific_capacity'].iloc[i-1]
# df['specific_capacity'].iloc[i:last_dchg] = df['specific_capacity'].iloc[i:last_dchg] + add
return df
def process_neware_data(df, options=None):
def process_neware_data(df, options={}):
""" Takes data from NEWARE in a DataFrame as read by read_neware() and converts units, adds columns and splits into cycles.
@ -245,25 +223,26 @@ def process_neware_data(df, options=None):
molecular_weight: the molar mass (in g mol^-1) of the active material, to calculate the number of ions extracted. Assumes one electron per Li+/Na+-ion """
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
default_options = {
'units': None,
'active_material_weight': None,
'molecular_weight': None,
'reverse_discharge': False,
'splice_cycles': None}
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'neware'
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df=df, kind='neware')
set_units(options=options) # sets options['units']
options['old_units'] = get_old_units(df=df, options=options)
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='neware')
df = add_columns(df=df, options=options) # adds columns to the DataFrame if active material weight and/or molecular weight has been passed in options
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='neware')
options['units'] = new_units
df = unit_conversion(df=df, options=options) # converts all units from the old units to the desired units
# Creates masks for charge and discharge curves
@ -288,6 +267,8 @@ def process_neware_data(df, options=None):
if chg_df.empty and dchg_df.empty:
continue
# Reverses the discharge curve if specified
if options['reverse_discharge']:
max_capacity = dchg_df['capacity'].max()
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
@ -310,35 +291,34 @@ def process_neware_data(df, options=None):
def process_biologic_data(df, options=None):
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
if not options:
options = default_options
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
default_options = {
'units': None,
'active_material_weight': None,
'molecular_weight': None,
'reverse_discharge': False,
'splice_cycles': None}
aux.update_options(options=options, required_options=required_options, default_options=default_options)
options['kind'] = 'biologic'
# Pick out necessary columns
df = df[['Ns changes', 'Ns', 'time/s', 'Ewe/V', 'Energy charge/W.h', 'Energy discharge/W.h', '<I>/mA', 'Capacity/mA.h', 'cycle number']].copy()
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
new_units = set_units(units=options['units'])
old_units = get_old_units(df=df, kind='biologic')
set_units(options)
options['old_units'] = get_old_units(df=df, options=options)
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='biologic')
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='biologic')
options['units'] = new_units
df = add_columns(df=df, options=options)
df = unit_conversion(df=df, options=options)
# Creates masks for charge and discharge curves
chg_mask = (df['status'] == 1) & (df['status_change'] != 1)
dchg_mask = (df['status'] == 2) & (df['status_change'] != 1)
# Initiate cycles list
cycles = []
@ -376,62 +356,62 @@ def process_biologic_data(df, options=None):
return cycles
def add_columns(df, active_material_weight, molecular_weight, old_units, kind):
def add_columns(df, options):
if kind == 'neware':
if active_material_weight:
df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity({})".format(old_units['capacity'])] / (active_material_weight)
if options['kind'] == 'neware':
if options['active_material_weight']:
df["SpecificCapacity({}/mg)".format(options['old_units']["capacity"])] = df["Capacity({})".format(options['old_units']['capacity'])] / (options['active_material_weight'])
if molecular_weight:
if options['molecular_weight']:
faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1
seconds_per_hour = 3600 # s h^-1
f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(options['old_units']['capacity'])]*options['molecular_weight'])*1000/f
if kind == 'biologic':
if active_material_weight:
if options['kind'] == 'biologic':
if options['active_material_weight']:
capacity = old_units['capacity'].split('h')[0] + '.h'
capacity = options['old_units']['capacity'].split('h')[0] + '.h'
df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity/{}".format(capacity)] / (active_material_weight)
df["SpecificCapacity({}/mg)".format(options['old_units']["capacity"])] = df["Capacity/{}".format(capacity)] / (options['active_material_weight'])
if molecular_weight:
if options['molecular_weight']:
faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1
seconds_per_hour = 3600 # s h^-1
f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f
df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(options['old_units']['capacity'])]*options['molecular_weight'])*1000/f
return df
def unit_conversion(df, new_units, old_units, kind):
def unit_conversion(df, options):
from . import unit_tables
if kind == 'batsmall':
if options['kind'] == 'batsmall':
df["TT [{}]".format(old_units["time"])] = df["TT [{}]".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']]
df["U [{}]".format(old_units["voltage"])] = df["U [{}]".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']]
df["I [{}]".format(old_units["current"])] = df["I [{}]".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']]
df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] = df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]] / unit_tables.mass()[old_units["mass"]].loc[new_units["mass"]])
df["TT [{}]".format(options['old_units']["time"])] = df["TT [{}]".format(options['old_units']["time"])] * unit_tables.time()[options['old_units']["time"]].loc[options['units']['time']]
df["U [{}]".format(options['old_units']["voltage"])] = df["U [{}]".format(options['old_units']["voltage"])] * unit_tables.voltage()[options['old_units']["voltage"]].loc[options['units']['voltage']]
df["I [{}]".format(options['old_units']["current"])] = df["I [{}]".format(options['old_units']["current"])] * unit_tables.current()[options['old_units']["current"]].loc[options['units']['current']]
df["C [{}/{}]".format(options['old_units']["capacity"], options['old_units']["mass"])] = df["C [{}/{}]".format(options['old_units']["capacity"], options['old_units']["mass"])] * (unit_tables.capacity()[options['old_units']["capacity"]].loc[options['units']["capacity"]] / unit_tables.mass()[options['old_units']["mass"]].loc[options['units']["mass"]])
df.columns = ['time', 'voltage', 'current', 'count', 'specific_capacity', 'comment']
if kind == 'neware':
df['Current({})'.format(old_units['current'])] = df['Current({})'.format(old_units['current'])] * unit_tables.current()[old_units['current']].loc[new_units['current']]
df['Voltage({})'.format(old_units['voltage'])] = df['Voltage({})'.format(old_units['voltage'])] * unit_tables.voltage()[old_units['voltage']].loc[new_units['voltage']]
df['Capacity({})'.format(old_units['capacity'])] = df['Capacity({})'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']]
df['Energy({})'.format(old_units['energy'])] = df['Energy({})'.format(old_units['energy'])] * unit_tables.energy()[old_units['energy']].loc[new_units['energy']]
df['CycleTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_time_string(row['Relative Time(h:min:s.ms)'], unit=new_units['time']), axis=1)
df['RunTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_datetime_string(row['Real Time(h:min:s.ms)'], reference=df['Real Time(h:min:s.ms)'].iloc[0], unit=new_units['time']), axis=1)
if options['kind'] == 'neware':
df['Current({})'.format(options['old_units']['current'])] = df['Current({})'.format(options['old_units']['current'])] * unit_tables.current()[options['old_units']['current']].loc[options['units']['current']]
df['Voltage({})'.format(options['old_units']['voltage'])] = df['Voltage({})'.format(options['old_units']['voltage'])] * unit_tables.voltage()[options['old_units']['voltage']].loc[options['units']['voltage']]
df['Capacity({})'.format(options['old_units']['capacity'])] = df['Capacity({})'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']]
df['Energy({})'.format(options['old_units']['energy'])] = df['Energy({})'.format(options['old_units']['energy'])] * unit_tables.energy()[options['old_units']['energy']].loc[options['units']['energy']]
df['CycleTime({})'.format(options['units']['time'])] = df.apply(lambda row : convert_time_string(row['Relative Time(h:min:s.ms)'], unit=options['units']['time']), axis=1)
df['RunTime({})'.format(options['units']['time'])] = df.apply(lambda row : convert_datetime_string(row['Real Time(h:min:s.ms)'], reference=df['Real Time(h:min:s.ms)'].iloc[0], unit=options['units']['time']), axis=1)
columns = ['status', 'jump', 'cycle', 'steps', 'current', 'voltage', 'capacity', 'energy']
if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]]
if 'SpecificCapacity({}/mg)'.format(options['old_units']['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] = df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']] / unit_tables.mass()['mg'].loc[options['units']["mass"]]
columns.append('specific_capacity')
if 'IonsExtracted' in df.columns:
@ -447,18 +427,18 @@ def unit_conversion(df, new_units, old_units, kind):
df.columns = columns
if kind == 'biologic':
df['time/{}'.format(old_units['time'])] = df["time/{}".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']]
df["Ewe/{}".format(old_units["voltage"])] = df["Ewe/{}".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']]
df["<I>/{}".format(old_units["current"])] = df["<I>/{}".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']]
if options['kind'] == 'biologic':
df['time/{}'.format(options['old_units']['time'])] = df["time/{}".format(options['old_units']["time"])] * unit_tables.time()[options['old_units']["time"]].loc[options['units']['time']]
df["Ewe/{}".format(options['old_units']["voltage"])] = df["Ewe/{}".format(options['old_units']["voltage"])] * unit_tables.voltage()[options['old_units']["voltage"]].loc[options['units']['voltage']]
df["<I>/{}".format(options['old_units']["current"])] = df["<I>/{}".format(options['old_units']["current"])] * unit_tables.current()[options['old_units']["current"]].loc[options['units']['current']]
capacity = old_units['capacity'].split('h')[0] + '.h'
df["Capacity/{}".format(capacity)] = df["Capacity/{}".format(capacity)] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]])
capacity = options['old_units']['capacity'].split('h')[0] + '.h'
df["Capacity/{}".format(capacity)] = df["Capacity/{}".format(capacity)] * (unit_tables.capacity()[options['old_units']["capacity"]].loc[options['units']["capacity"]])
columns = ['status_change', 'status', 'time', 'voltage', 'energy_charge', 'energy_discharge', 'current', 'capacity', 'cycle']
if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]]
if 'SpecificCapacity({}/mg)'.format(options['old_units']['capacity']) in df.columns:
df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] = df['SpecificCapacity({}/mg)'.format(options['old_units']['capacity'])] * unit_tables.capacity()[options['old_units']['capacity']].loc[options['units']['capacity']] / unit_tables.mass()['mg'].loc[options['units']["mass"]]
columns.append('specific_capacity')
if 'IonsExtracted' in df.columns:
@ -469,37 +449,42 @@ def unit_conversion(df, new_units, old_units, kind):
return df
def set_units(units=None):
def set_units(options: dict) -> None:
# Complete the list of units - if not all are passed, then default value will be used
required_units = ['time', 'current', 'voltage', 'capacity', 'mass', 'energy', 'specific_capacity']
default_units = {'time': 'h', 'current': 'mA', 'voltage': 'V', 'capacity': 'mAh', 'mass': 'g', 'energy': 'mWh', 'specific_capacity': None}
if not units:
units = default_units
default_units = {
'time': 'h',
'current': 'mA',
'voltage': 'V',
'capacity': 'mAh',
'mass': 'g',
'energy': 'mWh',
'specific_capacity': None}
if units:
for unit in required_units:
if unit not in units.keys():
units[unit] = default_units[unit]
units['specific_capacity'] = r'{} {}'.format(units['capacity'], units['mass']) + '$^{-1}$'
if not options['units']:
options['units'] = default_units
return units
aux.update_options(options=options['units'], required_options=required_units, default_options=default_units)
options['units']['specific_capacity'] = r'{} {}'.format(options['units']['capacity'], options['units']['mass']) + '$^{-1}$'
def get_old_units(df, kind):
def get_old_units(df: pd.DataFrame, options: dict) -> dict:
''' Reads a DataFrame with cycling data and determines which units have been used and returns these in a dictionary'''
if options['kind'] == 'batsmall':
if kind=='batsmall':
time = df.columns[0].split()[-1].strip('[]')
voltage = df.columns[1].split()[-1].strip('[]')
current = df.columns[2].split()[-1].strip('[]')
capacity, mass = df.columns[4].split()[-1].strip('[]').split('/')
old_units = {'time': time, 'current': current, 'voltage': voltage, 'capacity': capacity, 'mass': mass}
if kind=='neware':
if options['kind']=='neware':
for column in df.columns:
if 'Voltage' in column:
@ -514,7 +499,7 @@ def get_old_units(df, kind):
old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy}
if kind=='biologic':
if options['kind'] == 'biologic':
for column in df.columns:
if 'time' in column:
@ -530,8 +515,6 @@ def get_old_units(df, kind):
old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy, 'time': time}
return old_units
def convert_time_string(time_string, unit='ms'):

View file

@ -5,59 +5,120 @@ import pandas as pd
import numpy as np
import math
import ipywidgets as widgets
from IPython.display import display
import nafuma.electrochemistry as ec
import nafuma.plotting as btp
import nafuma.auxillary as aux
def plot_gc(path, kind, options=None):
# Prepare plot, and read and process data
fig, ax = prepare_gc_plot(options=options)
cycles = ec.io.read_data(path=path, kind=kind, options=options)
def plot_gc(data, options=None):
# Update options
required_options = ['x_vals', 'y_vals', 'which_cycles', 'chg', 'dchg', 'colours', 'differentiate_charge_discharge', 'gradient']
default_options = {'x_vals': 'capacity', 'y_vals': 'voltage', 'which_cycles': 'all', 'chg': True, 'dchg': True, 'colours': None, 'differentiate_charge_discharge': True, 'gradient': False}
required_options = ['x_vals', 'y_vals', 'which_cycles', 'charge', 'discharge', 'colours', 'differentiate_charge_discharge', 'gradient', 'interactive', 'interactive_session_active', 'rc_params', 'format_params']
default_options = {
'x_vals': 'capacity', 'y_vals': 'voltage',
'which_cycles': 'all',
'charge': True, 'discharge': True,
'colours': None,
'differentiate_charge_discharge': True,
'gradient': False,
'interactive': False,
'interactive_session_active': False,
'rc_params': {},
'format_params': {}}
options = update_options(options=options, required_options=required_options, default_options=default_options)
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not 'cycles' in data.keys():
data['cycles'] = ec.io.read_data(data=data, options=options)
# Update list of cycles to correct indices
update_cycles_list(cycles=cycles, options=options)
update_cycles_list(cycles=data['cycles'], options=options)
colours = generate_colours(cycles=cycles, options=options)
colours = generate_colours(cycles=data['cycles'], options=options)
if options['interactive']:
options['interactive'], options['interactive_session_active'] = False, True
plot_gc_interactive(data=data, options=options)
return
for i, cycle in enumerate(cycles):
# Prepare plot, and read and process data
fig, ax = btp.prepare_plot(options=options)
for i, cycle in enumerate(data['cycles']):
if i in options['which_cycles']:
if options['chg']:
if options['charge']:
cycle[0].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][0])
if options['dchg']:
if options['discharge']:
cycle[1].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][1])
fig, ax = prettify_gc_plot(fig=fig, ax=ax, options=options)
return cycles, fig, ax
def update_options(options, required_options, default_options):
if not options:
options = default_options
if options['interactive_session_active']:
update_labels(options, force=True)
else:
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
update_labels(options)
return options
fig, ax = btp.adjust_plot(fig=fig, ax=ax, options=options)
def update_cycles_list(cycles, options):
#if options['interactive_session_active']:
if not options:
options['which_cycles']
return data['cycles'], fig, ax
def plot_gc_interactive(data, options):
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_gc), data=widgets.fixed(data), options=widgets.fixed(options),
charge=widgets.ToggleButton(value=True),
discharge=widgets.ToggleButton(value=True),
x_vals=widgets.Dropdown(options=['specific_capacity', 'capacity', 'ions', 'voltage', 'time', 'energy'], value='specific_capacity', description='X-values')
)
options['widget'] = w
display(w)
def update_labels(options, force=False):
if 'xlabel' not in options.keys() or force:
options['xlabel'] = options['x_vals'].capitalize().replace('_', ' ')
if 'ylabel' not in options.keys() or force:
options['ylabel'] = options['y_vals'].capitalize().replace('_', ' ')
if 'xunit' not in options.keys() or force:
if options['x_vals'] == 'capacity':
options['xunit'] = options['units']['capacity']
elif options['x_vals'] == 'specific_capacity':
options['xunit'] = f"{options['units']['capacity']} {options['units']['mass']}$^{{-1}}$"
elif options['x_vals'] == 'time':
options['xunit'] = options['units']['time']
elif options['x_vals'] == 'ions':
options['xunit'] = None
if 'yunit' not in options.keys() or force:
if options['y_vals'] == 'voltage':
options['yunit'] = options['units']['voltage']
def update_cycles_list(cycles, options: dict) -> None:
if options['which_cycles'] == 'all':
options['which_cycles'] = [i for i in range(len(cycles))]
@ -81,52 +142,6 @@ def update_cycles_list(cycles, options):
options['which_cycles'] = [i-1 for i in range(which_cycles[0], which_cycles[1]+1)]
return options
def prepare_gc_plot(options=None):
# First take care of the options for plotting - set any values not specified to the default values
required_options = ['columns', 'width', 'height', 'format', 'dpi', 'facecolor']
default_options = {'columns': 1, 'width': 14, 'format': 'golden_ratio', 'dpi': None, 'facecolor': 'w'}
# If none are set at all, just pass the default_options
if not options:
options = default_options
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
options['figsize'] = (options['width'], options['height'])
# If options is passed, go through to fill out the rest.
else:
# Start by setting the width:
if 'width' not in options.keys():
options['width'] = default_options['width']
# Then set height - check options for format. If not given, set the height to the width scaled by the golden ratio - if the format is square, set the same. This should possibly allow for the tweaking of custom ratios later.
if 'height' not in options.keys():
if 'format' not in options.keys():
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
elif options['format'] == 'square':
options['height'] = options['width']
options['figsize'] = (options['width'], options['height'])
# After height and width are set, go through the rest of the options to make sure that all the required options are filled
for option in required_options:
if option not in options.keys():
options[option] = default_options[option]
fig, ax = plt.subplots(figsize=(options['figsize']), dpi=options['dpi'], facecolor=options['facecolor'])
linewidth = 1*options['columns']
axeswidth = 3*options['columns']
plt.rc('lines', linewidth=linewidth)
plt.rc('axes', linewidth=axeswidth)
return fig, ax
def prettify_gc_plot(fig, ax, options=None):
@ -161,12 +176,12 @@ def prettify_gc_plot(fig, ax, options=None):
'positions': {'xaxis': 'bottom', 'yaxis': 'left'},
'x_vals': 'specific_capacity', 'y_vals': 'voltage',
'xlabel': None, 'ylabel': None,
'units': None,
'units': {'capacity': 'mAh', 'specific_capacity': r'mAh g$^{-1}$', 'time': 's', 'current': 'mA', 'energy': 'mWh', 'mass': 'g', 'voltage': 'V'},
'sizes': None,
'title': None
}
update_options(options, required_options, default_options)
aux.update_options(options, required_options, default_options)
##################################################################

View file

@ -135,7 +135,10 @@ def adjust_plot(fig, ax, options):
ax.set_ylabel('')
if not options['hide_x_labels']:
if not options['xunit']:
ax.set_xlabel(f'{options["xlabel"]}')
else:
ax.set_xlabel(f'{options["xlabel"]} [{options["xunit"]}]')
else:
ax.set_xlabel('')

View file

@ -5,6 +5,7 @@ import numpy as np
import os
import matplotlib.pyplot as plt
import nafuma.auxillary as aux
import nafuma.plotting as btp
import nafuma.xanes as xas
import nafuma.xanes.io as io
@ -14,6 +15,7 @@ import ipywidgets as widgets
from IPython.display import display
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
#Trying to make a function that can decide which edge it is based on the first ZapEnergy-value
@ -249,7 +251,6 @@ def pre_edge_subtraction(data: dict, options={}):
def post_edge_fit(data: dict, options={}):
''' Fit the post edge within the post_edge.limits to a polynomial of post_edge.polyorder order. Allows interactive plotting, as well as showing static plots and saving plots to drive.
@ -258,6 +259,7 @@ def post_edge_fit(data: dict, options={}):
required_options = ['log', 'logfile', 'post_edge_masks', 'post_edge_limits', 'post_edge_polyorder', 'post_edge_store_data', 'interactive', 'interactive_session_active', 'show_plots', 'save_plots', 'save_folder']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_post_edge_fit.log',
@ -339,6 +341,7 @@ def post_edge_fit(data: dict, options={}):
#adding a new column in df_background with the y-values of the background
post_edge_fit_data.insert(1,filename,background)
if options['save_plots'] or options['show_plots']:

View file

@ -6,12 +6,10 @@ import nafuma.auxillary as aux
from nafuma.xanes.calib import find_element
import datetime
def split_scan_data(data: dict, options={}) -> list:
''' Splits a XANES-file from BM31 into different files depending on the edge. Has the option to add intensities of all scans of same edge into the same file.
As of now only picks out xmap_rois (fluoresence mode) and for Mn, Fe, Co and Ni K-edges.'''
required_options = ['log', 'logfile', 'save', 'save_folder', 'replace', 'active_roi', 'add_rois', 'return']
default_options = {

View file

@ -40,12 +40,13 @@ def integrate_1d(data, options={}, index=0):
df: DataFrame contianing 1D diffractogram if option 'return' is True
'''
required_options = ['unit', 'nbins', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite', 'extract_folder']
required_options = ['unit', 'npt', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite', 'extract_folder', 'error_model']
default_options = {
'unit': '2th_deg',
'nbins': 3000,
'npt': 3000,
'extract_folder': 'tmp',
'error_model': None,
'save': False,
'save_filename': None,
'save_extension': '_integrated.xy',
@ -59,9 +60,17 @@ def integrate_1d(data, options={}, index=0):
# Get image array from filename if not passed
if 'image' not in data.keys():
if 'image' not in data.keys() or not data['image']:
data['image'] = get_image_array(data['path'][index])
# Load mask
if 'mask' in data.keys():
mask = get_image_array(data['mask'])
else:
mask = None
# Instanciate the azimuthal integrator from pyFAI from the calibrant (.poni-file)
ai = pyFAI.load(data['calibrant'])
@ -72,11 +81,17 @@ def integrate_1d(data, options={}, index=0):
if not os.path.isdir(options['extract_folder']):
os.makedirs(options['extract_folder'])
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
res = ai.integrate1d(data['image'], options['nbins'], unit=options['unit'], filename=filename)
res = ai.integrate1d(data['image'], npt=options['npt'], mask=mask, error_model=options['error_model'], unit=options['unit'], filename=filename)
data['path'][index] = filename
diffractogram, wavelength = read_xy(data=data, options=options, index=index)
diffractogram, _ = read_xy(data=data, options=options, index=index)
wavelength = find_wavelength_from_poni(path=data['calibrant'])
if not options['save']:
os.remove(filename)
@ -278,8 +293,12 @@ def read_brml(data, options={}, index=0):
#if 'wavelength' not in data.keys():
# Find wavelength
if not data['wavelength'][index]:
for chain in root.findall('./FixedInformation/Instrument/PrimaryTracks/TrackInfoData/MountedOptics/InfoData/Tube/WaveLengthAlpha1'):
wavelength = float(chain.attrib['Value'])
else:
wavelength = data['wavelength'][index]
diffractogram = pd.DataFrame(diffractogram)
@ -302,7 +321,11 @@ def read_xy(data, options={}, index=0):
#if 'wavelength' not in data.keys():
# Get wavelength from scan
if not 'wavelength' in data.keys() or data['wavelength'][index]:
wavelength = find_wavelength_from_xy(path=data['path'][index])
else:
wavelength = data['wavelength'][index]
with open(data['path'][index], 'r') as f:
position = 0
@ -326,6 +349,38 @@ def read_xy(data, options={}, index=0):
return diffractogram, wavelength
def strip_headers_from_xy(path: str, filename=None) -> None:
''' Strips headers from a .xy-file'''
xy = []
with open(path, 'r') as f:
lines = f.readlines()
headerlines = 0
for line in lines:
if line[0] == '#':
headerlines += 1
else:
xy.append(line)
if not filename:
ext = path.split('.')[-1]
filename = path.split(f'.{ext}')[0] + f'_noheaders.{ext}'
with open(filename, 'w') as f:
for line in xy:
f.write(line)
def read_data(data, options={}, index=0):
beamline_extensions = ['mar3450', 'edf', 'cbf']
@ -351,6 +406,7 @@ def read_data(data, options={}, index=0):
diffractogram = apply_offset(diffractogram, wavelength, index, options)
diffractogram = translate_wavelengths(data=diffractogram, wavelength=wavelength)
return diffractogram, wavelength
@ -470,7 +526,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th_cuka'] = np.NAN
data['2th_cuka'].loc[data['2th'] <= max_2th_cuka] = 2*np.arcsin(cuka/wavelength * np.sin((data['2th']/2) * np.pi/180)) * 180/np.pi
data['2th_cuka'].loc[data['2th'] <= max_2th_cuka] = 2*np.arcsin(cuka/wavelength * np.sin((data['2th'].loc[data['2th'] <= max_2th_cuka]/2) * np.pi/180)) * 180/np.pi
# Translate to MoKalpha
moka = 0.71073 # Å
@ -482,7 +538,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th_moka'] = np.NAN
data['2th_moka'].loc[data['2th'] <= max_2th_moka] = 2*np.arcsin(moka/wavelength * np.sin((data['2th']/2) * np.pi/180)) * 180/np.pi
data['2th_moka'].loc[data['2th'] <= max_2th_moka] = 2*np.arcsin(moka/wavelength * np.sin((data['2th'].loc[data['2th'] <= max_2th_moka]/2) * np.pi/180)) * 180/np.pi
# Convert to other parameters
@ -501,7 +557,7 @@ def translate_wavelengths(data: pd.DataFrame, wavelength: float, to_wavelength=N
data['2th'] = np.NAN
data['2th'].loc[data['2th_cuka'] <= max_2th] = 2*np.arcsin(to_wavelength/cuka * np.sin((data['2th_cuka']/2) * np.pi/180)) * 180/np.pi
data['2th'].loc[data['2th_cuka'] <= max_2th] = 2*np.arcsin(to_wavelength/cuka * np.sin((data['2th_cuka'].loc[data['2th_cuka'] <= max_2th]/2) * np.pi/180)) * 180/np.pi
@ -528,6 +584,22 @@ def find_wavelength_from_xy(path):
elif 'Wavelength' in line:
wavelength = float(line.split()[2])*10**10
else:
wavelength = None
return wavelength
def find_wavelength_from_poni(path):
with open(path, 'r') as f:
lines = f.readlines()
for line in lines:
if 'Wavelength' in line:
wavelength = float(line.split()[-1])*10**10
return wavelength

View file

@ -13,7 +13,6 @@ import nafuma.xrd as xrd
import nafuma.auxillary as aux
import nafuma.plotting as btp
def plot_diffractogram(data, options={}):
''' Plots a diffractogram.
@ -67,7 +66,14 @@ def plot_diffractogram(data, options={}):
if not 'diffractogram' in data.keys():
# Initialise empty list for diffractograms and wavelengths
data['diffractogram'] = [None for _ in range(len(data['path']))]
# If wavelength is not manually passed it should be automatically gathered from the .xy-file
if 'wavelength' not in data.keys():
data['wavelength'] = [None for _ in range(len(data['path']))]
else:
# If only a single value is passed it should be set to be the same for all diffractograms passed
if not isinstance(data['wavelength'], list):
data['wavelength'] = [data['wavelength'] for _ in range(len(data['path']))]
for index in range(len(data['path'])):
diffractogram, wavelength = xrd.io.read_data(data=data, options=options, index=index)
@ -75,6 +81,9 @@ def plot_diffractogram(data, options={}):
data['diffractogram'][index] = diffractogram
data['wavelength'][index] = wavelength
# FIXME This is a quick fix as the image is not reloaded when passing multiple beamline datasets
data['image'] = None
# Sets the xlim if this has not bee specified
if not options['xlim']:
options['xlim'] = [data['diffractogram'][0][options['x_vals']].min(), data['diffractogram'][0][options['x_vals']].max()]
@ -114,7 +123,7 @@ def plot_diffractogram(data, options={}):
options['reflections_data'] = [options['reflections_data']]
# Determine number of subplots and height ratios between them
if len(options['reflections_data']) >= 1:
if options['reflections_data'] and len(options['reflections_data']) >= 1:
options = determine_grid_layout(options=options)
@ -331,10 +340,10 @@ def plot_diffractogram_interactive(data, options):
'heatmap_default': {'min': xminmax['heatmap'][0], 'max': xminmax['heatmap'][1], 'value': [xminmax['heatmap'][0], xminmax['heatmap'][1]], 'step': 10}
},
'ylim': {
'w': widgets.FloatRangeSlider(value=[yminmax['start'][2], yminmax['start'][3]], min=yminmax['start'][0], max=yminmax['start'][1], step=0.5, layout=widgets.Layout(width='95%')),
'w': widgets.FloatRangeSlider(value=[yminmax['start'][2], yminmax['start'][3]], min=yminmax['start'][0], max=yminmax['start'][1], step=0.01, layout=widgets.Layout(width='95%')),
'state': 'heatmap' if options['heatmap'] else 'diff',
'diff_default': {'min': yminmax['diff'][0], 'max': yminmax['diff'][1], 'value': [yminmax['diff'][2], yminmax['diff'][3]], 'step': 0.1},
'heatmap_default': {'min': yminmax['heatmap'][0], 'max': yminmax['heatmap'][1], 'value': [yminmax['heatmap'][0], yminmax['heatmap'][1]], 'step': 0.1}
'diff_default': {'min': yminmax['diff'][0], 'max': yminmax['diff'][1], 'value': [yminmax['diff'][2], yminmax['diff'][3]], 'step': 0.01},
'heatmap_default': {'min': yminmax['heatmap'][0], 'max': yminmax['heatmap'][1], 'value': [yminmax['heatmap'][0], yminmax['heatmap'][1]], 'step': 0.01}
}
}
@ -356,7 +365,12 @@ def plot_diffractogram_interactive(data, options):
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_diffractogram), data=widgets.fixed(data), options=widgets.fixed(options),
scatter=widgets.ToggleButton(value=False),
line=widgets.ToggleButton(value=True),
xlim=options['widgets']['xlim']['w'])
heatmap=widgets.ToggleButton(value=options['heatmap']),
x_vals=widgets.Dropdown(options=['2th', 'd', '1/d', 'q', 'q2', 'q4', '2th_cuka', '2th_moka'], value='2th', description='X-values'),
xlim=options['widgets']['xlim']['w'],
ylim=options['widgets']['ylim']['w'],
offset_y=widgets.BoundedFloatText(value=options['offset_y'], min=-5, max=5, step=0.01, description='offset_y'),
offset_x=widgets.BoundedFloatText(value=options['offset_x'], min=-1, max=1, step=0.01, description='offset_x'))
options['widget'] = w

View file

@ -1 +0,0 @@
hei på dej