Add plot functionality to electrochemistry
This commit is contained in:
parent
4f255fd9d5
commit
43e6ef27c8
2 changed files with 433 additions and 33 deletions
|
|
@ -4,6 +4,22 @@ import matplotlib.pyplot as plt
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def read_data(path, kind, options=None):
|
||||||
|
|
||||||
|
if kind == 'neware':
|
||||||
|
df = read_neware(path)
|
||||||
|
cycles = process_neware_data(df, options=options)
|
||||||
|
|
||||||
|
elif kind == 'batsmall':
|
||||||
|
df = read_batsmall(path)
|
||||||
|
cycles = process_batsmall_data(df=df, options=options)
|
||||||
|
|
||||||
|
elif kind == 'biologic':
|
||||||
|
df = read_biologic(path)
|
||||||
|
cycles = process_biologic_data(df=df, options=options)
|
||||||
|
|
||||||
|
return cycles
|
||||||
|
|
||||||
def read_batsmall(path):
|
def read_batsmall(path):
|
||||||
''' Reads BATSMALL-data into a DataFrame.
|
''' Reads BATSMALL-data into a DataFrame.
|
||||||
|
|
||||||
|
|
@ -77,7 +93,7 @@ def read_biologic(path):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def process_batsmall_data(df, units=None, splice_cycles=None, molecular_weight=None):
|
def process_batsmall_data(df, options=None):
|
||||||
''' Takes BATSMALL-data in the form of a DataFrame and cleans the data up and converts units into desired units.
|
''' Takes BATSMALL-data in the form of a DataFrame and cleans the data up and converts units into desired units.
|
||||||
Splits up into individual charge and discharge DataFrames per cycle, and outputs a list where each element is a tuple with the Chg and DChg-data. E.g. cycles[10][0] gives the charge data for the 11th cycle.
|
Splits up into individual charge and discharge DataFrames per cycle, and outputs a list where each element is a tuple with the Chg and DChg-data. E.g. cycles[10][0] gives the charge data for the 11th cycle.
|
||||||
|
|
||||||
|
|
@ -94,12 +110,24 @@ def process_batsmall_data(df, units=None, splice_cycles=None, molecular_weight=N
|
||||||
cycles: A list with
|
cycles: A list with
|
||||||
'''
|
'''
|
||||||
|
|
||||||
|
required_options = ['splice_cycles', 'molecular_weight', 'reverse_discharge', 'units']
|
||||||
|
default_options = {'splice_cycles': None, 'molecular_weight': None, 'reverse_discharge': False, 'units': None}
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
options = default_options
|
||||||
|
else:
|
||||||
|
for option in required_options:
|
||||||
|
if option not in options.keys():
|
||||||
|
options[option] = default_options[option]
|
||||||
|
|
||||||
|
|
||||||
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
||||||
new_units = set_units(units=units)
|
new_units = set_units(units=options['units'])
|
||||||
old_units = get_old_units(df, kind='batsmall')
|
old_units = get_old_units(df, kind='batsmall')
|
||||||
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='batsmall')
|
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='batsmall')
|
||||||
|
|
||||||
|
options['units'] = new_units
|
||||||
|
|
||||||
# Replace NaN with empty string in the Comment-column and then remove all steps where the program changes - this is due to inconsistent values for current
|
# Replace NaN with empty string in the Comment-column and then remove all steps where the program changes - this is due to inconsistent values for current
|
||||||
df[["comment"]] = df[["comment"]].fillna(value={'comment': ''})
|
df[["comment"]] = df[["comment"]].fillna(value={'comment': ''})
|
||||||
df = df[df["comment"].str.contains("program")==False]
|
df = df[df["comment"].str.contains("program")==False]
|
||||||
|
|
@ -126,6 +154,18 @@ def process_batsmall_data(df, units=None, splice_cycles=None, molecular_weight=N
|
||||||
if chg_df.empty and dchg_df.empty:
|
if chg_df.empty and dchg_df.empty:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
if options['reverse_discharge']:
|
||||||
|
max_capacity = dchg_df['capacity'].max()
|
||||||
|
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
|
||||||
|
|
||||||
|
if 'specific_capacity' in df.columns:
|
||||||
|
max_capacity = dchg_df['specific_capacity'].max()
|
||||||
|
dchg_df['specific_capacity'] = np.abs(dchg_df['specific_capacity'] - max_capacity)
|
||||||
|
|
||||||
|
if 'ions' in df.columns:
|
||||||
|
max_capacity = dchg_df['ions'].max()
|
||||||
|
dchg_df['ions'] = np.abs(dchg_df['ions'] - max_capacity)
|
||||||
|
|
||||||
cycles.append((chg_df, dchg_df))
|
cycles.append((chg_df, dchg_df))
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -134,7 +174,7 @@ def process_batsmall_data(df, units=None, splice_cycles=None, molecular_weight=N
|
||||||
return cycles
|
return cycles
|
||||||
|
|
||||||
|
|
||||||
def process_neware_data(df, units=None, splice_cycles=None, active_material_weight=None, molecular_weight=None, reverse_discharge=False):
|
def process_neware_data(df, options=None):
|
||||||
|
|
||||||
""" Takes data from NEWARE in a DataFrame as read by read_neware() and converts units, adds columns and splits into cycles.
|
""" Takes data from NEWARE in a DataFrame as read by read_neware() and converts units, adds columns and splits into cycles.
|
||||||
|
|
||||||
|
|
@ -145,14 +185,27 @@ def process_neware_data(df, units=None, splice_cycles=None, active_material_weig
|
||||||
active_materiale_weight: weight of the active material (in mg) used in the cell.
|
active_materiale_weight: weight of the active material (in mg) used in the cell.
|
||||||
molecular_weight: the molar mass (in g mol^-1) of the active material, to calculate the number of ions extracted. Assumes one electron per Li+/Na+-ion """
|
molecular_weight: the molar mass (in g mol^-1) of the active material, to calculate the number of ions extracted. Assumes one electron per Li+/Na+-ion """
|
||||||
|
|
||||||
|
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
|
||||||
|
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
options = default_options
|
||||||
|
else:
|
||||||
|
for option in required_options:
|
||||||
|
if option not in options.keys():
|
||||||
|
options[option] = default_options[option]
|
||||||
|
|
||||||
|
|
||||||
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
||||||
new_units = set_units(units=units)
|
new_units = set_units(units=options['units'])
|
||||||
old_units = get_old_units(df=df, kind='neware')
|
old_units = get_old_units(df=df, kind='neware')
|
||||||
|
|
||||||
df = add_columns(df=df, active_material_weight=active_material_weight, molecular_weight=molecular_weight, old_units=old_units, kind='neware')
|
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='neware')
|
||||||
|
|
||||||
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='neware')
|
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='neware')
|
||||||
|
|
||||||
|
options['units'] = new_units
|
||||||
|
|
||||||
|
|
||||||
# Creates masks for charge and discharge curves
|
# Creates masks for charge and discharge curves
|
||||||
chg_mask = df['status'] == 'CC Chg'
|
chg_mask = df['status'] == 'CC Chg'
|
||||||
|
|
@ -176,7 +229,7 @@ def process_neware_data(df, units=None, splice_cycles=None, active_material_weig
|
||||||
if chg_df.empty and dchg_df.empty:
|
if chg_df.empty and dchg_df.empty:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if reverse_discharge:
|
if options['reverse_discharge']:
|
||||||
max_capacity = dchg_df['capacity'].max()
|
max_capacity = dchg_df['capacity'].max()
|
||||||
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
|
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
|
||||||
|
|
||||||
|
|
@ -195,19 +248,31 @@ def process_neware_data(df, units=None, splice_cycles=None, active_material_weig
|
||||||
return cycles
|
return cycles
|
||||||
|
|
||||||
|
|
||||||
def process_biologic_data(df, units=None, splice_cycles=None, active_material_weight=None, molecular_weight=None, reverse_discharge=False):
|
def process_biologic_data(df, options=None):
|
||||||
|
|
||||||
|
required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles']
|
||||||
|
default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None}
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
options = default_options
|
||||||
|
else:
|
||||||
|
for option in required_options:
|
||||||
|
if option not in options.keys():
|
||||||
|
options[option] = default_options[option]
|
||||||
|
|
||||||
# Pick out necessary columns
|
# Pick out necessary columns
|
||||||
df = df[['Ns changes', 'Ns', 'time/s', 'Ewe/V', 'Energy charge/W.h', 'Energy discharge/W.h', '<I>/mA', 'Capacity/mA.h', 'cycle number']].copy()
|
df = df[['Ns changes', 'Ns', 'time/s', 'Ewe/V', 'Energy charge/W.h', 'Energy discharge/W.h', '<I>/mA', 'Capacity/mA.h', 'cycle number']].copy()
|
||||||
|
|
||||||
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
# Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new.
|
||||||
new_units = set_units(units=units)
|
new_units = set_units(units=options['units'])
|
||||||
old_units = get_old_units(df=df, kind='biologic')
|
old_units = get_old_units(df=df, kind='biologic')
|
||||||
|
|
||||||
df = add_columns(df=df, active_material_weight=active_material_weight, molecular_weight=molecular_weight, old_units=old_units, kind='biologic')
|
df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='biologic')
|
||||||
|
|
||||||
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='biologic')
|
df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='biologic')
|
||||||
|
|
||||||
|
options['units'] = new_units
|
||||||
|
|
||||||
|
|
||||||
# Creates masks for charge and discharge curves
|
# Creates masks for charge and discharge curves
|
||||||
chg_mask = (df['status'] == 1) & (df['status_change'] != 1)
|
chg_mask = (df['status'] == 1) & (df['status_change'] != 1)
|
||||||
|
|
@ -233,7 +298,7 @@ def process_biologic_data(df, units=None, splice_cycles=None, active_material_we
|
||||||
if chg_df.empty and dchg_df.empty:
|
if chg_df.empty and dchg_df.empty:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if reverse_discharge:
|
if options['reverse_discharge']:
|
||||||
max_capacity = dchg_df['capacity'].max()
|
max_capacity = dchg_df['capacity'].max()
|
||||||
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
|
dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity)
|
||||||
|
|
||||||
|
|
@ -348,8 +413,8 @@ def unit_conversion(df, new_units, old_units, kind):
|
||||||
def set_units(units=None):
|
def set_units(units=None):
|
||||||
|
|
||||||
# Complete the list of units - if not all are passed, then default value will be used
|
# Complete the list of units - if not all are passed, then default value will be used
|
||||||
required_units = ['time', 'current', 'voltage', 'capacity', 'mass', 'energy']
|
required_units = ['time', 'current', 'voltage', 'capacity', 'mass', 'energy', 'specific_capacity']
|
||||||
default_units = {'time': 'h', 'current': 'mA', 'voltage': 'V', 'capacity': 'mAh', 'mass': 'g', 'energy': 'mWh'}
|
default_units = {'time': 'h', 'current': 'mA', 'voltage': 'V', 'capacity': 'mAh', 'mass': 'g', 'energy': 'mWh', 'specific_capacity': None}
|
||||||
|
|
||||||
if not units:
|
if not units:
|
||||||
units = default_units
|
units = default_units
|
||||||
|
|
@ -359,6 +424,8 @@ def set_units(units=None):
|
||||||
if unit not in units.keys():
|
if unit not in units.keys():
|
||||||
units[unit] = default_units[unit]
|
units[unit] = default_units[unit]
|
||||||
|
|
||||||
|
units['specific_capacity'] = r'{} {}'.format(units['capacity'], units['mass']) + '$^{-1}$'
|
||||||
|
|
||||||
|
|
||||||
return units
|
return units
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -1,40 +1,373 @@
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator)
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import math
|
||||||
|
|
||||||
|
import beamtime.electrochemistry as ec
|
||||||
|
|
||||||
|
|
||||||
def plot_gc(cycles, which_cycles='all', chg=True, dchg=True, colours=None, x='C', y='U'):
|
def plot_gc(path, kind, options=None):
|
||||||
|
|
||||||
fig, ax = prepare_gc_plot()
|
# Prepare plot, and read and process data
|
||||||
|
fig, ax = prepare_gc_plot(options=options)
|
||||||
|
cycles = ec.io.read_data(path=path, kind=kind, options=options)
|
||||||
|
|
||||||
|
|
||||||
if which_cycles == 'all':
|
# Update options
|
||||||
which_cycles = [i for i, c in enumerate(cycles)]
|
required_options = ['x_vals', 'y_vals', 'which_cycles', 'chg', 'dchg', 'colours', 'gradient']
|
||||||
|
default_options = {'x_vals': 'capacity', 'y_vals': 'voltage', 'which_cycles': 'all', 'chg': True, 'dchg': True, 'colours': None, 'gradient': False}
|
||||||
|
|
||||||
if not colours:
|
options = update_options(options=options, required_options=required_options, default_options=default_options)
|
||||||
chg_colour = (40/255, 70/255, 75/255) # Dark Slate Gray #28464B
|
|
||||||
dchg_colour = (239/255, 160/255, 11/255) # Marigold #EFA00B
|
# Update list of cycles to correct indices
|
||||||
|
update_cycles_list(cycles=cycles, options=options)
|
||||||
|
|
||||||
|
colours = generate_colours(cycles=cycles, options=options)
|
||||||
|
|
||||||
|
print(len(options['which_cycles']))
|
||||||
|
print(len(colours))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
for i, cycle in cycles:
|
for i, cycle in enumerate(cycles):
|
||||||
if i in which_cycles:
|
if i in options['which_cycles']:
|
||||||
if chg:
|
if options['chg']:
|
||||||
cycle[0].plot(ax=ax)
|
cycle[0].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][0])
|
||||||
|
|
||||||
|
if options['dchg']:
|
||||||
|
cycle[1].plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=colours[i][1])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
fig, ax = prettify_gc_plot(fig=fig, ax=ax, options=options)
|
||||||
|
|
||||||
|
return cycles, fig, ax
|
||||||
|
|
||||||
|
|
||||||
|
def update_options(options, required_options, default_options):
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
options = default_options
|
||||||
|
|
||||||
|
else:
|
||||||
|
for option in required_options:
|
||||||
|
if option not in options.keys():
|
||||||
|
options[option] = default_options[option]
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
def update_cycles_list(cycles, options):
|
||||||
|
|
||||||
|
if not options:
|
||||||
|
options['which_cycles']
|
||||||
|
|
||||||
|
if options['which_cycles'] == 'all':
|
||||||
|
options['which_cycles'] = [i for i in range(len(cycles))]
|
||||||
|
|
||||||
|
|
||||||
|
elif type(options['which_cycles']) == list:
|
||||||
|
options['which_cycles'] = [i-1 for i in options['which_cycles']]
|
||||||
|
|
||||||
|
|
||||||
|
# Tuple is used to define an interval - as elements tuples can't be assigned, I convert it to a list here.
|
||||||
|
elif type(options['which_cycles']) == tuple:
|
||||||
|
which_cycles = list(options['which_cycles'])
|
||||||
|
|
||||||
|
if which_cycles[0] <= 0:
|
||||||
|
which_cycles[0] = 1
|
||||||
|
|
||||||
|
elif which_cycles[1] < 0:
|
||||||
|
which_cycles[1] = len(cycles)
|
||||||
|
|
||||||
|
|
||||||
def prepare_gc_plot(figsize=(14,7), dpi=None):
|
options['which_cycles'] = [i-1 for i in range(which_cycles[0], which_cycles[1]+1)]
|
||||||
|
|
||||||
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
|
|
||||||
|
|
||||||
|
return options
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_gc_plot(options=None):
|
||||||
|
|
||||||
|
|
||||||
|
# First take care of the options for plotting - set any values not specified to the default values
|
||||||
|
required_options = ['columns', 'width', 'height', 'format', 'dpi', 'facecolor']
|
||||||
|
default_options = {'columns': 1, 'width': 14, 'format': 'golden_ratio', 'dpi': None, 'facecolor': 'w'}
|
||||||
|
|
||||||
|
# If none are set at all, just pass the default_options
|
||||||
|
if not options:
|
||||||
|
options = default_options
|
||||||
|
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
|
||||||
|
options['figsize'] = (options['width'], options['height'])
|
||||||
|
|
||||||
|
|
||||||
|
# If options is passed, go through to fill out the rest.
|
||||||
|
else:
|
||||||
|
# Start by setting the width:
|
||||||
|
if 'width' not in options.keys():
|
||||||
|
options['width'] = default_options['width']
|
||||||
|
|
||||||
|
# Then set height - check options for format. If not given, set the height to the width scaled by the golden ratio - if the format is square, set the same. This should possibly allow for the tweaking of custom ratios later.
|
||||||
|
if 'height' not in options.keys():
|
||||||
|
if 'format' not in options.keys():
|
||||||
|
options['height'] = options['width'] * (math.sqrt(5) - 1) / 2
|
||||||
|
elif options['format'] == 'square':
|
||||||
|
options['height'] = options['width']
|
||||||
|
|
||||||
|
options['figsize'] = (options['width'], options['height'])
|
||||||
|
|
||||||
|
# After height and width are set, go through the rest of the options to make sure that all the required options are filled
|
||||||
|
for option in required_options:
|
||||||
|
if option not in options.keys():
|
||||||
|
options[option] = default_options[option]
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(figsize=(options['figsize']), dpi=options['dpi'], facecolor=options['facecolor'])
|
||||||
|
|
||||||
|
linewidth = 1*options['columns']
|
||||||
|
axeswidth = 3*options['columns']
|
||||||
|
|
||||||
|
plt.rc('lines', linewidth=linewidth)
|
||||||
|
plt.rc('axes', linewidth=axeswidth)
|
||||||
|
|
||||||
return fig, ax
|
return fig, ax
|
||||||
|
|
||||||
|
|
||||||
|
def prettify_gc_plot(fig, ax, options=None):
|
||||||
|
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
######################### UPDATE OPTIONS #########################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
# Define the required options
|
||||||
|
required_options = [
|
||||||
|
'columns',
|
||||||
|
'xticks', 'yticks',
|
||||||
|
'show_major_ticks',
|
||||||
|
'show_minor_ticks',
|
||||||
|
'xlim', 'ylim',
|
||||||
|
'hide_x_axis', 'hide_y_axis',
|
||||||
|
'x_vals', 'y_vals',
|
||||||
|
'xlabel', 'ylabel',
|
||||||
|
'units', 'sizes',
|
||||||
|
'title'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# Define the default options
|
||||||
|
default_options = {
|
||||||
|
'columns': 1,
|
||||||
|
'xticks': None,
|
||||||
|
'yticks': None,
|
||||||
|
'show_major_ticks': [True, True, True, True],
|
||||||
|
'show_minor_ticks': [True, True, True, True],
|
||||||
|
'xlim': None,
|
||||||
|
'ylim': None,
|
||||||
|
'hide_x_axis': False,
|
||||||
|
'hide_y_axis': False,
|
||||||
|
'x_vals': 'specific_capacity',
|
||||||
|
'y_vals': 'voltage',
|
||||||
|
'xlabel': None,
|
||||||
|
'ylabel': None,
|
||||||
|
'units': None,
|
||||||
|
'sizes': None,
|
||||||
|
'title': None
|
||||||
|
}
|
||||||
|
|
||||||
|
update_options(options, required_options, default_options)
|
||||||
|
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
########################## DEFINE SIZES ##########################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
# Define the required sizes
|
||||||
|
required_sizes = [
|
||||||
|
'labels',
|
||||||
|
'legend',
|
||||||
|
'title',
|
||||||
|
'line', 'axes',
|
||||||
|
'tick_labels',
|
||||||
|
'major_ticks', 'minor_ticks']
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Define default sizes
|
||||||
|
default_sizes = {
|
||||||
|
'labels': 30*options['columns'],
|
||||||
|
'legend': 30*options['columns'],
|
||||||
|
'title': 30*options['columns'],
|
||||||
|
'line': 3*options['columns'],
|
||||||
|
'axes': 3*options['columns'],
|
||||||
|
'tick_labels': 30*options['columns'],
|
||||||
|
'major_ticks': 20*options['columns'],
|
||||||
|
'minor_ticks': 10*options['columns']
|
||||||
|
}
|
||||||
|
|
||||||
|
# Initialise dictionary if it doesn't exist
|
||||||
|
if not options['sizes']:
|
||||||
|
options['sizes'] = {}
|
||||||
|
|
||||||
|
|
||||||
|
# Update dictionary with default values where none is supplied
|
||||||
|
for size in required_sizes:
|
||||||
|
if size not in options['sizes']:
|
||||||
|
options['sizes'][size] = default_sizes[size]
|
||||||
|
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
########################## AXIS LABELS ###########################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
|
||||||
|
if not options['xlabel']:
|
||||||
|
print(options['x_vals'])
|
||||||
|
print(options['units'])
|
||||||
|
options['xlabel'] = prettify_labels(options['x_vals']) + ' [{}]'.format(options['units'][options['x_vals']])
|
||||||
|
|
||||||
|
else:
|
||||||
|
options['xlabel'] = options['xlabel'] + ' [{}]'.format(options['units'][options['x_vals']])
|
||||||
|
|
||||||
|
|
||||||
|
if not options['ylabel']:
|
||||||
|
options['ylabel'] = prettify_labels(options['y_vals']) + ' [{}]'.format(options['units'][options['y_vals']])
|
||||||
|
|
||||||
|
else:
|
||||||
|
options['ylabel'] = options['ylabel'] + ' [{}]'.format(options['units'][options['y_vals']])
|
||||||
|
|
||||||
|
ax.set_xlabel(options['xlabel'], size=options['sizes']['labels'])
|
||||||
|
ax.set_ylabel(options['ylabel'], size=options['sizes']['labels'])
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
###################### TICK MARKS & LABELS #######################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
ax.tick_params(direction='in', which='major', bottom=options['show_major_ticks'][0], left=options['show_major_ticks'][1], top=options['show_major_ticks'][2], right=options['show_major_ticks'][0], length=options['sizes']['major_ticks'], width=options['sizes']['axes'])
|
||||||
|
ax.tick_params(direction='in', which='minor', bottom=options['show_minor_ticks'][0], left=options['show_minor_ticks'][1], top=options['show_minor_ticks'][2], right=options['show_minor_ticks'][0], length=options['sizes']['minor_ticks'], width=options['sizes']['axes'])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# DEFINE AND SET TICK DISTANCES
|
||||||
|
|
||||||
|
default_ticks = {
|
||||||
|
'specific_capacity': [100, 50],
|
||||||
|
'capacity': [0.1, 0.05],
|
||||||
|
'voltage': [0.5, 0.25]
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Set default tick distances for x-axis if not specified
|
||||||
|
if not options['xticks']:
|
||||||
|
|
||||||
|
major_xtick = default_ticks[options['x_vals']][0]
|
||||||
|
minor_xtick = default_ticks[options['x_vals']][1]
|
||||||
|
|
||||||
|
# Otherwise apply user input
|
||||||
|
else:
|
||||||
|
major_xtick = options['xticks'][0]
|
||||||
|
minor_xtick = options['xticks'][1]
|
||||||
|
|
||||||
|
|
||||||
|
# Set default tick distances for x-axis if not specified
|
||||||
|
if not options['yticks']:
|
||||||
|
|
||||||
|
major_ytick = default_ticks[options['y_vals']][0]
|
||||||
|
minor_ytick = default_ticks[options['y_vals']][1]
|
||||||
|
|
||||||
|
# Otherwise apply user input
|
||||||
|
else:
|
||||||
|
major_xtick = options['yticks'][0]
|
||||||
|
minor_xtick = options['yticks'][1]
|
||||||
|
|
||||||
|
|
||||||
|
# Apply values
|
||||||
|
ax.xaxis.set_major_locator(MultipleLocator(major_xtick))
|
||||||
|
ax.xaxis.set_minor_locator(MultipleLocator(minor_xtick))
|
||||||
|
|
||||||
|
ax.yaxis.set_major_locator(MultipleLocator(major_ytick))
|
||||||
|
ax.yaxis.set_minor_locator(MultipleLocator(minor_ytick))
|
||||||
|
|
||||||
|
|
||||||
|
# SET FONTSIZE OF TICK LABELS
|
||||||
|
|
||||||
|
plt.xticks(fontsize=options['sizes']['tick_labels'])
|
||||||
|
plt.yticks(fontsize=options['sizes']['tick_labels'])
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
############################# TITLE ##############################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
if options['title']:
|
||||||
|
ax.set_title(options['title'], size=options['sizes']['title'])
|
||||||
|
|
||||||
|
##################################################################
|
||||||
|
############################# LEGEND #############################
|
||||||
|
##################################################################
|
||||||
|
|
||||||
|
ax.get_legend().remove()
|
||||||
|
|
||||||
|
return fig, ax
|
||||||
|
|
||||||
|
|
||||||
|
def prettify_labels(label):
|
||||||
|
|
||||||
|
labels_dict = {
|
||||||
|
'capacity': 'Capacity',
|
||||||
|
'specific_capacity': 'Specific capacity',
|
||||||
|
'voltage': 'Voltage',
|
||||||
|
'current': 'Current',
|
||||||
|
'energy': 'Energy',
|
||||||
|
}
|
||||||
|
|
||||||
|
return labels_dict[label]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def generate_colours(cycles, options):
|
||||||
|
|
||||||
|
# Assign colours from the options dictionary if it is defined, otherwise use standard colours.
|
||||||
|
if options['colours']:
|
||||||
|
charge_colour = options['colours'][0]
|
||||||
|
discharge_colour = options['colours'][1]
|
||||||
|
|
||||||
|
else:
|
||||||
|
charge_colour = (40/255, 70/255, 75/255) # Dark Slate Gray #28464B, coolors.co
|
||||||
|
discharge_colour = (239/255, 160/255, 11/255) # Marigold #EFA00B, coolors.co
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# If gradient is enabled, find start and end points for each colour
|
||||||
|
if options['gradient']:
|
||||||
|
|
||||||
|
add_charge = min([(1-x)*0.75 for x in charge_colour])
|
||||||
|
add_discharge = min([(1-x)*0.75 for x in discharge_colour])
|
||||||
|
|
||||||
|
charge_colour_start = charge_colour
|
||||||
|
charge_colour_end = [x+add_charge for x in charge_colour]
|
||||||
|
|
||||||
|
discharge_colour_start = discharge_colour
|
||||||
|
discharge_colour_end = [x+add_discharge for x in discharge_colour]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Generate lists of colours
|
||||||
|
colours = []
|
||||||
|
|
||||||
|
for cycle_number in range(0, len(cycles)):
|
||||||
|
if options['gradient']:
|
||||||
|
weight_start = (len(cycles) - cycle_number)/len(cycles)
|
||||||
|
weight_end = cycle_number/len(cycles)
|
||||||
|
|
||||||
|
charge_colour = [weight_start*start_colour + weight_end*end_colour for start_colour, end_colour in zip(charge_colour_start, charge_colour_end)]
|
||||||
|
discharge_colour = [weight_start*start_colour + weight_end*end_colour for start_colour, end_colour in zip(discharge_colour_start, discharge_colour_end)]
|
||||||
|
|
||||||
|
colours.append([charge_colour, discharge_colour])
|
||||||
|
|
||||||
|
return colours
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue