Complete smooth and get determine_edge_position going

This commit is contained in:
rasmusvt 2022-06-22 15:56:34 +02:00
parent 9e39135f00
commit 4d501adb72

View file

@ -1,3 +1,5 @@
from logging import raiseExceptions
from jinja2 import TemplateRuntimeError
import pandas as pd
import numpy as np
import os
@ -160,31 +162,7 @@ def pre_edge_subtraction(data: dict, options={}):
return xanes_data_bkgd_subtracted
def estimate_edge_position(data: dict, options={}, index=0):
#a dataset is differentiated to find a first estimate of the edge shift to use as starting point.
required_options = ['log','logfile', 'periods']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_edge_position_estimation.log',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
#making new dataframe to keep the differentiated data
df_diff = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
df_diff[data['path'][index]]=data['xanes_data_original'][data['path'][index]].diff(periods=options['periods'])
#shifting column values up so that average differential fits right between the points used in the calculation
df_diff[data['path'][index]]=df_diff[data['path'][index]].shift(-int(options['periods']/2))
df_diff_max = df_diff[data['path'][index]].dropna().max()
estimated_edge_shift =df_diff.loc[df_diff[data['path'][index]] == df_diff_max,'ZapEnergy'].values[0]
# FIXME Add logging option to see the result
if options['log']:
aux.write_log(message=f'Estimated edge shift for determination of pre-edge area is: {estimated_edge_shift} keV', options=options)
return estimated_edge_shift
def post_edge_fit(data: dict, options={}):
@ -274,21 +252,19 @@ def smoothing(data: dict, options={}):
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
df_smooth = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['save_default']:
data['xanes_data_smooth_default'] = data['xanes_data']['ZapEnergy']
df_smooth_default = pd.DataFrame(data['xanes_data']['ZapEnergy'])
# FIXME Add other types of filters
# FIXME Instead of assigning values directly to the data dictionary, these should be made into an own DataFrame that you can decide later what to do with - these variables should
# then be returned
for filename in data['path']:
xanes_smooth = savgol_filter(data['xanes_data'][filename], options['window_length'], options['polyorder'])
if options['save_default']:
default_smooth = savgol_filter(data['xanes_data'][filename], default_options['window_length'], default_options['polyorder'])
data['xanes_data'][filename] = xanes_smooth
df_smooth.insert(1, filename, savgol_filter(data['xanes_data'][filename], options['window_length'], options['polyorder']))
if options['save_default']:
data['xanes_data_smooth_default'][filename] = default_smooth
df_smooth_default.insert(1, filename, savgol_filter(data['xanes_data'][filename], default_options['window_length'], default_options['polyorder']))
if options['save_plots']:
@ -298,39 +274,35 @@ def smoothing(data: dict, options={}):
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_smooth.png'
edge_pos = estimate_edge_position(data=data, options=options)
intensity_midpoint = data['xanes_data'][filename].max() - data['xanes_data'][filename].min()
intensity_midpoint = df_smooth[filename].iloc[np.where(df_smooth['ZapEnergy'] == find_nearest(df_smooth['ZapEnergy'], edge_pos))].values[0]
if options['save_default']:
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,5))
data['xanes_data'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
xanes_smooth.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.set_xlim([edge_pos-0.5, edge_pos+0.5])
ax1.set_ylim([intensity_midpoint*0.98, intensity_midpoint*1.02])
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax1, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax2)
data['xanes_data_smooth_default'].plot(x='ZapEnergy', y=filename, color='green', ax=ax2)
ax2.set_xlim([edge_pos-0.5, edge_pos+0.5])
ax2.set_ylim([intensity_midpoint*0.98, intensity_midpoint*1.02])
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth_default.loc[(df_smooth_default['ZapEnergy'] > edge_pos-0.0015) & (df_smooth_default['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
ax2.set_title(f'{os.path.basename(filename)} - Smooth (default values)', size=20)
elif not options['save_default']:
fig, ax = plt.subplots(figsize=(10,5))
data['xanes_data'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
xanes_smooth.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.set_xlim([edge_pos-0.5, edge_pos+0.5])
ax1.set_ylim([intensity_midpoint*0.98, intensity_midpoint*1.02])
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax)
ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])
ax.set_ylim([intensity_midpoint*0.9, intensity_midpoint*1.1])
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
ax.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
plt.savefig(dst, transparent=False)
plt.close()
# FIXME See comment above about return values
return None
if not options['save_default']:
df_smooth_default = None
return df_smooth, df_smooth_default
@ -340,133 +312,184 @@ def find_nearest(array, value):
idx = (np.abs(array - value)).argmin()
return array[idx]
def finding_e0(path, options={}):
required_options = ['print','periods']
def estimate_edge_position(data: dict, options={}, index=0):
#a dataset is differentiated to find a first estimate of the edge shift to use as starting point.
required_options = ['log','logfile', 'periods']
default_options = {
'print': False,
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_edge_position_estimation.log',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
df_smooth, filenames = smoothing(path, options=options) #This way the smoothing is printed as long as the "finding e0" is printed.
if options['periods'] % 2 == 1:
print("NB!!!!!!!!!!!!!!!!! Periods needs to be an even number for the shifting of values to work properly")
###df_diff = pd.DataFrame(df_smooth["ZapEnergy"]) #
if len(filenames) == 1:
filenames=filenames[0]
else:
print("MORE THAN ONE FILE --> generalize")
#####
estimated_edge_shift, df_diff, df_diff_max = estimate_edge_position(df_smooth, filenames,options=options)
print(estimated_edge_shift)
####
###df_diff[filenames]=df_smooth[filenames].diff(periods=options['periods']) #
df_doublediff=pd.DataFrame(df_smooth["ZapEnergy"])
df_doublediff[filenames]=df_diff[filenames].diff(periods=options['periods'])
if options['print'] == True:
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
df_diff.plot(x = "ZapEnergy",y=filenames, ax=ax1) #defining x and y
df_doublediff.plot(x = "ZapEnergy",y=filenames,ax=ax2) #defining x and y
#making new dataframe to keep the differentiated data
df_diff = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
df_diff[data['path'][index]]=data['xanes_data_original'][data['path'][index]].diff(periods=options['periods'])
#shifting column values up so that average differential fits right between the points used in the calculation
#df_diff[filenames]=df_diff[filenames].shift(-int(options['periods']/2)) #
df_doublediff[filenames]=df_doublediff[filenames].shift(-int(options['periods']))
df_diff[data['path'][index]]=df_diff[data['path'][index]].shift(-int(options['periods']/2))
df_diff_max = df_diff[data['path'][index]].dropna().max()
estimated_edge_shift =df_diff.loc[df_diff[data['path'][index]] == df_diff_max,'ZapEnergy'].values[0]
#finding maximum value to maneuver to the correct part of the data set
#df_diff_max = df_diff[filenames].dropna().max()
# FIXME Add logging option to see the result
if options['log']:
aux.write_log(message=f'Estimated edge shift for determination of pre-edge area is: {estimated_edge_shift} keV', options=options)
return estimated_edge_shift
def determine_edge_position(data: dict, options={}):
required_options = ['log', 'logfile', 'save_plots', 'save_folder', 'periods', 'diff', 'double_diff', 'fit_region']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_determine_edge_position.log',
'save_plots': False,
'save_folder': './',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly,
'diff': True,
'double_diff': False,
'fit_region': 0.0005
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if options['periods'] % 2 == 1:
raise Exception("NB! Periods needs to be an even number for the shifting of values to work properly")
estimated_edge_shift=df_diff.loc[df_diff[filenames] == df_diff_max,'ZapEnergy'].values[0]
fit_region = 0.0004
df_diff_edge=df_diff.loc[(df_diff["ZapEnergy"] < estimated_edge_shift+fit_region)]# and (df_diff["ZapEnergy"] > estimated_edge_shift-0.05)]
df_diff_edge=df_diff_edge.loc[(df_diff["ZapEnergy"] > estimated_edge_shift-fit_region)]
df_doublediff_edge=df_doublediff.loc[(df_doublediff["ZapEnergy"] < estimated_edge_shift+fit_region)]# and (df_diff["ZapEnergy"] > estimated_edge_shift-0.05)]
df_doublediff_edge=df_doublediff_edge.loc[(df_doublediff["ZapEnergy"] > estimated_edge_shift-fit_region)]
#df_diff_edge=df_diff.loc[(df_diff["ZapEnergy"] > estimated_edge_shift-0.15) and (df_diff["ZapEnergy"] < estimated_edge_shift+0.15)]
#df_diff_edge=df_diff.loc[df_diff["ZapEnergy"] > estimated_edge_shift-0.15]
#print(df_diff_edge)
if options['print'] == True:
fig, (ax3,ax4) = plt.subplots(1,2,figsize=(15,5))
df_diff_edge.plot(x = "ZapEnergy",y=filenames,ax=ax3) #defining x and y
ax3.set_title("Zoomed into edge region (derivative))")
ax3.axvline(x = estimated_edge_shift)
df_doublediff_edge.plot(x = "ZapEnergy",y=filenames,ax=ax4,kind="scatter") #defining x and y
ax4.set_title("Zoomed into edge region (double derivative)")
ax4.axvline(x = estimated_edge_shift)
ax4.axhline(0)
#ax1.set_xlim([estimated_edge_shift-fit_region,estimated_edge_shift+fit_region])
#ax1.set_title("not sure what this is tbh")
#ax2.set_xlim([estimated_edge_shift-fit_region,estimated_edge_shift+fit_region])
#ax2.set_title("not sure what this is either tbh")
#==============
#df_smooth=df_smooth2
#=================
#####
if options['diff']:
df_diff = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['double_diff']:
df_double_diff = pd.DataFrame(data['xanes_data']['ZapEnergy'])
for i, filename in enumerate(data['path']):
estimated_edge_pos = estimate_edge_position(data, options=options, index=i)
#========================== fitting first differential ==========
df_diff = df_diff[df_diff[filenames].notna()]
#fitting a function to the chosen interval
d = np.polyfit(df_diff_edge["ZapEnergy"],df_diff_edge[filenames],2)
function_diff = np.poly1d(d)
if options['diff']:
df_diff[filename] = data['xanes_data'][filename].diff(periods=options['periods'])
df_diff[filename]=df_diff[filename].shift(-int(options['periods']/2))
x_diff=np.linspace(df_diff_edge["ZapEnergy"].iloc[0],df_diff_edge["ZapEnergy"].iloc[-1],num=1000)
y_diff=function_diff(x_diff)
#print(df_diff_edge["ZapEnergy"].iloc[-1])
if options['print'] == True:
ax3.plot(x_diff,y_diff,color='Green')
#y_diff_max=np.amax(y_diff,0)
y_diff_max_index = np.where(y_diff == np.amax(y_diff))
#print(y_diff_max_index[0])
edge_shift_diff=float(x_diff[y_diff_max_index])
print("Edge shift estimated by the differential maximum is "+str(round(edge_shift_diff,5)))
if options['print'] == True:
ax3.axvline(x=edge_shift_diff,color="green")
#print(df_doublediff_edge["ZapEnergy"].iloc[0])
#ax4.plot(x_doublediff,y_doublediff,color='Green'))
df_diff_edge = df_diff.loc[(df_diff["ZapEnergy"] < estimated_edge_pos+options['fit_region']) & ((df_diff["ZapEnergy"] > estimated_edge_pos-options['fit_region']))]
#fitting double differentiate
df_doublediff = df_doublediff[df_doublediff[filenames].notna()]
d = np.polyfit(df_doublediff_edge["ZapEnergy"],df_doublediff_edge[filenames],2)
function_doublediff = np.poly1d(d)
# Fitting a function to the chosen interval
params = np.polyfit(df_diff_edge["ZapEnergy"], df_diff_edge[filename], 2)
diff_function = np.poly1d(params)
x_doublediff=np.linspace(df_doublediff_edge["ZapEnergy"].iloc[0],df_doublediff_edge["ZapEnergy"].iloc[-1],num=10000)
y_doublediff=function_doublediff(x_doublediff)
x_diff=np.linspace(df_diff_edge["ZapEnergy"].iloc[0],df_diff_edge["ZapEnergy"].iloc[-1],num=10000)
y_diff=diff_function(x_diff)
if options['print'] == True:
ax4.plot(x_doublediff,y_doublediff,color='Green')
df_diff_fit_function = pd.DataFrame(x_diff)
df_diff_fit_function['y_diff'] = y_diff
df_diff_fit_function.columns = ['x_diff', 'y_diff']
y_doublediff_zero=find_nearest(y_doublediff,0)
y_doublediff_zero_index = np.where(y_doublediff == y_doublediff_zero)
# Picks out the x-value where the y-value is at a maximum
edge_pos_diff=x_diff[np.where(y_diff == np.amax(y_diff))][0]
edge_shift_doublediff=float(x_doublediff[y_doublediff_zero_index])
if options['log']:
aux.write_log(message=f"Edge shift estimated by the differential maximum is: {str(round(edge_pos_diff,5))}", options=options)
print("Edge shift estimated by the double differential zero-point is "+str(round(edge_shift_doublediff,5)))
if options['print'] == True:
ax4.axvline(x=edge_shift_doublediff,color="green")
return df_smooth, filenames, edge_shift_diff
if options['double_diff']:
df_double_diff[filename] = data['xanes_data'][filename].diff(periods=options['periods']).diff(periods=options['periods'])
df_double_diff[filename]=df_double_diff[filename].shift(-int(options['periods']))
# Pick out region of interest
df_double_diff_edge = df_double_diff.loc[(df_double_diff["ZapEnergy"] < estimated_edge_pos+options['fit_region']) & ((df_double_diff["ZapEnergy"] > estimated_edge_pos-options['fit_region']))]
# Fitting a function to the chosen interval
params = np.polyfit(df_double_diff_edge["ZapEnergy"], df_double_diff_edge[filename], 2)
double_diff_function = np.poly1d(params)
x_double_diff=np.linspace(df_double_diff_edge["ZapEnergy"].iloc[0], df_double_diff_edge["ZapEnergy"].iloc[-1],num=10000)
y_double_diff=double_diff_function(x_double_diff)
df_double_diff_fit_function = pd.DataFrame(x_double_diff)
df_double_diff_fit_function['y_diff'] = y_double_diff
df_double_diff_fit_function.columns = ['x_diff', 'y_diff']
# Picks out the x-value where the y-value is closest to 0
edge_pos_double_diff=x_double_diff[np.where(y_double_diff == find_nearest(y_double_diff,0))][0]
if options['log']:
aux.write_log(message=f"Edge shift estimated by the double differential zero-point is {str(round(edge_pos_double_diff,5))}", options=options)
if options['save_plots']:
if options['diff'] and options['double_diff']:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2, figsize=(20,20))
df_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax1)
ax1.set_xlim([edge_pos_diff-0.0015, edge_pos_diff+0.0015])
ax1.axvline(x=edge_pos_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_diff+options['fit_region'], ls='--', c='black')
ax1.set_title('Fit region of differentiated data')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
ax2.set_title('Fit of differentiated data')
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax3, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
ax3.set_xlim([edge_pos_double_diff-0.0015, edge_pos_double_diff+0.0015])
ax3.axvline(x=edge_pos_double_diff-options['fit_region'], ls='--', c='black')
ax3.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax3.axvline(x=edge_pos_double_diff+options['fit_region'], ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax4, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax4)
ax4.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax4.axvline(x=estimated_edge_pos, ls='--', c='red')
elif options['diff']:
fig, (ax1, ax2) = plt.subplots(ncols=2,nrows=1, figsize=(20, 10))
df_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
ax1.set_xlim([edge_pos_diff-0.5, edge_pos_diff+0.5])
ax1.axvline(x=edge_pos_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_diff+options['fit_region'], ls='--', c='black')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2)
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
elif options['double_diff']:
fig, (ax1, ax2) = plt.subplots(ncols=2,nrows=1, figsize=(20, 10))
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
ax1.set_xlim([edge_pos_double_diff-0.5, edge_pos_double_diff+0.5])
ax1.axvline(x=edge_pos_double_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_double_diff+options['fit_region'], ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2)
ax2.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
if not options['diff']:
edge_pos_diff = None
if not options['double_diff']:
edge_pos_double_diff = None
return edge_pos_diff, edge_pos_double_diff
def normalization(data,options={}):
required_options = ['print']