Tweaks based on workflow testing

This commit is contained in:
rasmusvt 2022-06-29 15:26:43 +02:00
parent c522b73ca4
commit 6bbd6776b8
2 changed files with 214 additions and 134 deletions

View file

@ -12,11 +12,21 @@ def update_options(options, required_options, default_options):
return options
def save_options(options, path):
def save_options(options, path, ignore=None):
''' Saves any options dictionary to a JSON-file in the specified path'''
options_copy = options.copy()
if ignore:
if not isinstance(ignore, list):
ignore = [ignore]
for i in ignore:
options_copy[i] = 'Removed'
with open(path, 'w') as f:
json.dump(options,f)
json.dump(options_copy,f, skipkeys=True, indent=4)
def load_options(path):

View file

@ -46,12 +46,12 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
# FIXME Add log-file
required_options = ['pre_edge_limit', 'masks', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'ylim', 'interactive']
required_options = ['pre_edge_limits', 'pre_edge_masks', 'pre_edge_polyorder', 'pre_edge_store_data', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'ylim', 'interactive']
default_options = {
'pre_edge_limits': [None, None],
'pre_edge_masks': [],
'pre_edge_polyorder': 1,
'pre_edge_save_data': False,
'pre_edge_store_data': False,
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_pre_edge_fit.log',
'show_plots': False,
@ -159,7 +159,7 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
if options['log']:
aux.write_log(message=f'Pre edge fitting done.', options=options)
if options['pre_edge_save_data']:
if options['pre_edge_store_data']:
data['pre_edge_fit_data'] = pre_edge_fit_data
return pre_edge_fit_data
@ -171,7 +171,8 @@ def pre_edge_fit_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(pre_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
pre_edge_limits=widgets.FloatRangeSlider(value=[options['pre_edge_limits'][0], options['pre_edge_limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001)
pre_edge_limits=widgets.FloatRangeSlider(value=[options['pre_edge_limits'][0], options['pre_edge_limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001),
pre_edge_store_data=widgets.Checkbox(value=options['pre_edge_store_data'])
)
options['widget'] = w
@ -183,12 +184,14 @@ def pre_edge_fit_interactive(data: dict, options: dict) -> None:
def pre_edge_subtraction(data: dict, options={}):
required_options = ['log', 'logfile', 'save_plots', 'save_folder']
required_options = ['log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'pre_edge_subtraction_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_pre_edge_subtraction.log',
'show_plots': False,
'save_plots': False,
'save_folder': './'
'save_folder': './',
'pre_edge_subtraction_store_data': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -203,20 +206,29 @@ def pre_edge_subtraction(data: dict, options={}):
xanes_data_bkgd_subtracted.insert(1, filename, data['xanes_data_original'][filename] - data['pre_edge_fit_data'][filename])
if options['save_plots'] or options['show_plots']:
fig, ax = plt.subplots(figsize=(10,5))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax, label='Original data')
xanes_data_bkgd_subtracted.plot(x='ZapEnergy', y=filename, color='red', ax=ax, label='Pre edge subtracted')
ax.set_title(f'{os.path.basename(filename)} - After subtraction', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_subtraction.png'
fig, ax = plt.subplots(figsize=(10,5))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax)
xanes_data_bkgd_subtracted.plot(x='ZapEnergy', y=filename, color='red', ax=ax)
ax.set_title(f'{os.path.basename(filename)} - After subtraction', size=20)
plt.savefig(dst)
if not options['show_plots']:
plt.close()
if options['pre_edge_subtraction_store_data']:
data['xanes_data'] = xanes_data_bkgd_subtracted
return xanes_data_bkgd_subtracted
@ -230,14 +242,14 @@ def post_edge_fit(data: dict, options={}):
'''
required_options = ['log', 'logfile', 'post_edge_masks', 'post_edge_limits', 'post_edge_polyorder', 'interactive', 'show_plots', 'save_plots', 'save_folder']
required_options = ['log', 'logfile', 'post_edge_masks', 'post_edge_limits', 'post_edge_polyorder', 'post_edge_store_data', 'interactive', 'show_plots', 'save_plots', 'save_folder']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_post_edge_fit.log',
'post_edge_limits': [None, None],
'post_edge_masks': [],
'post_edge_polyorder': 2,
'post_edge_save_data': False,
'post_edge_store_data': False,
'interactive': False,
'show_plots': False,
'save_plots': False,
@ -283,10 +295,10 @@ def post_edge_fit(data: dict, options={}):
for i, filename in enumerate(data['path']):
if options['log']:
aux.write_log(message=f'Fitting post edge on {os.path.basename(filename)} ({i+1} / {len(data["path"])}) with polynomial order {options["polyorder"]}', options=options)
aux.write_log(message=f'Fitting post edge on {os.path.basename(filename)} ({i+1} / {len(data["path"])}) with polynomial order {options["post_edge_polyorder"]}', options=options)
#Fitting linear function to the background
params = np.polyfit(post_edge_data["ZapEnergy"], post_edge_data[filename], options['polyorder'])
params = np.polyfit(post_edge_data["ZapEnergy"], post_edge_data[filename], options['post_edge_polyorder'])
fit_function = np.poly1d(params)
if options['log']:
@ -340,7 +352,7 @@ def post_edge_fit(data: dict, options={}):
if options['log']:
aux.write_log(message='Post edge fitting done!', options=options)
if options['post_edge_save_data']:
if options['post_edge_store_data']:
data['post_edge_fit_data'] = post_edge_fit_data
@ -352,7 +364,8 @@ def post_edge_fit_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(post_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
post_edge_limit=widgets.FloatRangeSlider(value=[options['post_edge.limits'][0], options['post_edge.limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001)
post_edge_limits=widgets.FloatRangeSlider(value=[options['post_edge_limits'][0], options['post_edge_limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001),
post_edge_store_data=widgets.Checkbox(value=options['post_edge_store_data'])
)
options['widget'] = w
@ -364,16 +377,19 @@ def smoothing(data: dict, options={}):
# FIXME Add logging
# FIXME Add saving of files
required_options = ['log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'smooth_window_length', 'smooth_algorithm', 'smooth_polyorder', 'smooth_save_default']
required_options = ['log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'interactive', 'smooth_window_length', 'smooth_algorithm', 'smooth_polyorder', 'smooth_save_default', 'smooth_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_smoothing.log',
'show_plots': False,
'save_plots': False,
'save_folder': './',
'interactive': False,
'smooth_window_length': 3,
'smooth_polyorder': 2,
'smooth_algorithm': 'savgol', # At the present, only Savitzky-Golay filter is implemented. Add Gaussian and Boxcar later.
'smooth_save_default': False,
'smooth_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -387,6 +403,7 @@ def smoothing(data: dict, options={}):
if options['interactive']:
data['xanes_data_backup'] = data['xanes_data']
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
@ -405,7 +422,7 @@ def smoothing(data: dict, options={}):
df_smooth.insert(1, filename, savgol_filter(data['xanes_data'][filename], options['smooth_window_length'], options['smooth_polyorder']))
if options['smooth_save_default']:
if options['smooth.algorithm'] == 'savgol':
if options['smooth_algorithm'] == 'savgol':
if options['log']:
aux.write_log(message=f'Smoothing {filename} using default parameters with algorithm: {options["smooth_algorithm"]} ({i+1}/{len(data["path"])})', options=options)
df_smooth_default.insert(1, filename, savgol_filter(data['xanes_data'][filename], default_options['smooth_window_length'], default_options['smooth_polyorder']))
@ -413,27 +430,36 @@ def smoothing(data: dict, options={}):
if options['save_plots'] or options['show_plots']:
edge_pos = estimate_edge_position(data=data, options=options)
intensity_midpoint = df_smooth[filename].iloc[np.where(df_smooth['ZapEnergy'] == find_nearest(df_smooth['ZapEnergy'], edge_pos))].values[0]
step_length = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0]
if options['smooth_save_default']:
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,5))
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax1, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax1, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth_default.loc[(df_smooth_default['ZapEnergy'] > edge_pos-0.0015) & (df_smooth_default['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth_default.loc[(df_smooth_default['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth_default['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
ax2.set_title(f'{os.path.basename(filename)} - Smooth (default values)', size=20)
elif not options['save_default']:
fig, ax = plt.subplots(figsize=(20,10))
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax)
ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])
ax.set_ylim([intensity_midpoint*0.9, intensity_midpoint*1.1])
elif not options['smooth_save_default']:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter', c='black')
df_smooth.plot(x='ZapEnergy', y=filename, ax=ax1, c='red')
ax.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
#ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])
#ax.set_ylim([intensity_midpoint*0.9, intensity_midpoint*1.1])
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
ax2.set_title(f'{os.path.basename(filename)} - Smooth Edge Region', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
@ -445,9 +471,13 @@ def smoothing(data: dict, options={}):
if not options['show_plots']:
plt.close()
if not options['save_default']:
if not options['smooth_save_default']:
df_smooth_default = None
if options['smooth_store_data']:
data['xanes_data'] = df_smooth
options['smooth_store_data'] = False
return df_smooth, df_smooth_default
@ -457,16 +487,21 @@ def smoothing_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(smoothing), data=widgets.fixed(data), options=widgets.fixed(options),
smooth_window_length=widgets.IntSlider(value=options['smooth_window_length'], min=1, max=20, step=1),
smooth_window_length=widgets.IntSlider(value=options['smooth_window_length'], min=3, max=21, step=2),
smooth_polyorder=widgets.IntSlider(value=options['smooth_polyorder'], min=1, max=5, step=1),
smooth_store_data=widgets.Checkbox(value=options['smooth_store_data'])
)
options['widget'] = w
display(w)
def restore_from_backup(data):
if 'xanes_data_bakcup' in data.keys():
data['xanes_data'] = data['xanes_data_backup']
def find_nearest(array, value):
#function to find the value closes to "value" in an "array"
array = np.asarray(array)
@ -480,7 +515,7 @@ def estimate_edge_position(data: dict, options={}, index=0):
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_edge_position_estimation.log',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly
'periods': 6, #Periods needs to be an even number for the shifting of values to work properly
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -509,7 +544,7 @@ def determine_edge_position(data: dict, options={}):
Requires that XANES-data is already loaded in data['xanes_data']. This allows the user to choose when to determine the edge position - whether before or after normalisation, flattening etc.'''
required_options = ['save_values', 'log', 'logfile', 'save_plots', 'save_folder', 'diff', 'diff.polyorder', 'diff.periods', 'double_diff', 'double_diff.polyorder', 'double_diff.periods', 'fit_region']
required_options = ['save_values', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'diff', 'diff.polyorder', 'diff.periods', 'double_diff', 'double_diff.polyorder', 'double_diff.periods', 'points_around_edge']
default_options = {
'save_values': True, # Whether the edge positions should be stored in a dictionary within the main data dictionary.
'log': False, # Toggles logging on/off
@ -521,9 +556,9 @@ def determine_edge_position(data: dict, options={}):
'diff.polyorder': 2, # Sets the order of the polynomial to fit edge region of the differential to
'diff.periods': 2, # Sets the number of data points between which the first order difference should be calculated. Needs to be even for subsequent shifting of data to function.
'double_diff': False, # Toggles calculation of the edge position based on double differential data
'double_diff.polyorder': 2, # Sets the order of the polynomial to fit edge region of the double differential to
'double_diff.polyorder': 1, # Sets the order of the polynomial to fit edge region of the double differential to
'double_diff.periods': 2, # Sets the number of data points between which the second order difference should be calculated. Needs to be even for subsequent shifting of data to function.
'fit_region': None # The length of the region to find points to fit to a function
'points_around_edge': 5 # The length of the region to find points to fit to a function
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -539,6 +574,16 @@ def determine_edge_position(data: dict, options={}):
raise Exception("NB! Periods needs to be an even number for the shifting of values to work properly")
if options['interactive']:
data['xanes_data_backup'] = data['xanes_data']
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
determine_edge_position_interactive(data=data, options=options)
return
# Prepare dataframes for differential data
if options['diff']:
@ -554,8 +599,8 @@ def determine_edge_position(data: dict, options={}):
for i, filename in enumerate(data['path']):
estimated_edge_pos = estimate_edge_position(data, options=options, index=i)
if not options['fit_region']:
options['fit_region'] = (5)*(data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0])
fit_region = (options['points_around_edge']+1)*(data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0])
#========================== Fitting the first order derivative ==========
@ -565,7 +610,7 @@ def determine_edge_position(data: dict, options={}):
df_diff[filename]=df_diff[filename].shift(-int(options['diff.periods']/2)) # Shifts the data back so that the difference between the points is located in the middle of the two points the caluclated difference is between
# Picks out the points to be fitted
df_diff_edge = df_diff.loc[(df_diff["ZapEnergy"] <= estimated_edge_pos+options['fit_region']) & ((df_diff["ZapEnergy"] >= estimated_edge_pos-options['fit_region']))]
df_diff_edge = df_diff.loc[(df_diff["ZapEnergy"] <= estimated_edge_pos+fit_region) & ((df_diff["ZapEnergy"] >= estimated_edge_pos-fit_region))]
# Fitting a function to the chosen interval
@ -594,7 +639,7 @@ def determine_edge_position(data: dict, options={}):
df_double_diff[filename]=df_double_diff[filename].shift(-int(options['double_diff.periods']))
# Pick out region of interest
df_double_diff_edge = df_double_diff.loc[(df_double_diff["ZapEnergy"] < estimated_edge_pos+options['fit_region']) & ((df_double_diff["ZapEnergy"] > estimated_edge_pos-options['fit_region']))]
df_double_diff_edge = df_double_diff.loc[(df_double_diff["ZapEnergy"] < estimated_edge_pos+fit_region) & ((df_double_diff["ZapEnergy"] > estimated_edge_pos-fit_region))]
# Fitting a function to the chosen interval
params = np.polyfit(df_double_diff_edge["ZapEnergy"], df_double_diff_edge[filename], options['double_diff.polyorder'])
@ -634,10 +679,10 @@ def determine_edge_position(data: dict, options={}):
df_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_diff-0.0015, edge_pos_diff+0.0015])
ax2.axvline(x=estimated_edge_pos-options['fit_region'], ls='--', c='black')
ax2.set_xlim([edge_pos_diff-fit_region*1.5, edge_pos_diff+fit_region*1.5])
ax2.axvline(x=estimated_edge_pos-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos+options['fit_region'], ls='--', c='black')
ax2.axvline(x=estimated_edge_pos+fit_region, ls='--', c='black')
ax2.set_title('Fit region of differentiated data')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3, kind='scatter')
@ -653,9 +698,9 @@ def determine_edge_position(data: dict, options={}):
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax5, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax5)
ax5.set_xlim([edge_pos_double_diff-0.0015, edge_pos_double_diff+0.0015])
ax5.axvline(x=estimated_edge_pos-options['fit_region'], ls='--', c='black')
ax5.axvline(x=estimated_edge_pos-fit_region, ls='--', c='black')
ax5.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax5.axvline(x=estimated_edge_pos+options['fit_region'], ls='--', c='black')
ax5.axvline(x=estimated_edge_pos+fit_region, ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax6, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax6)
@ -672,10 +717,10 @@ def determine_edge_position(data: dict, options={}):
df_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_diff-0.5, edge_pos_diff+0.5])
ax2.axvline(x=edge_pos_diff-options['fit_region'], ls='--', c='black')
ax2.set_xlim([edge_pos_diff-fit_region*1.5, edge_pos_diff+fit_region*1.5])
ax2.axvline(x=edge_pos_diff-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=edge_pos_diff+options['fit_region'], ls='--', c='black')
ax2.axvline(x=edge_pos_diff+fit_region, ls='--', c='black')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3)
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
@ -691,10 +736,10 @@ def determine_edge_position(data: dict, options={}):
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_double_diff-0.5, edge_pos_double_diff+0.5])
ax2.axvline(x=edge_pos_double_diff-options['fit_region'], ls='--', c='black')
ax2.set_xlim([edge_pos_double_diff-fit_region*1.5, edge_pos_double_diff+fit_region*1.5])
ax2.axvline(x=edge_pos_double_diff-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax2.axvline(x=edge_pos_double_diff+options['fit_region'], ls='--', c='black')
ax2.axvline(x=edge_pos_double_diff+fit_region, ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3)
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
@ -724,35 +769,59 @@ def determine_edge_position(data: dict, options={}):
return edge_pos_diff, edge_pos_double_diff
def determine_edge_position_interactive(data: dict, options: dict) -> None:
''' Defines the widgets to use with the ipywidgets interactive mode and calls the update function found in btp.ipywidgets. '''
step_size = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0]
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(determine_edge_position), data=widgets.fixed(data), options=widgets.fixed(options),
points_around_edge=widgets.IntSlider(value=options['points_around_edge'], min=1, max=20, step=1),
)
options['widget'] = w
display(w)
def normalise(data: dict, options={}):
required_options = ['log', 'logfile', 'save_values']
required_options = ['log', 'logfile', 'normalisation_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_normalisation.log',
'save_values': True
'normalisation_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
normalised_df = pd.DataFrame(data['xanes_data']['ZapEnergy'])
data['normalisation_constants'] = {}
if options['normalisation_store_data']:
pre_edge_fit_data_norm = pd.DataFrame(data['pre_edge_fit_data']['ZapEnergy'])
post_edge_fit_data_norm = pd.DataFrame(data['post_edge_fit_data']['ZapEnergy'])
#Finding the normalisation constant µ_0(E_0), by subtracting the value of the pre-edge-line from the value of the post-edge line at e0
for filename in data['path']:
e0_ind = data['post_edge_fit_data'].loc[data['post_edge_fit_data']['ZapEnergy'] == find_nearest(data['post_edge_fit_data']['ZapEnergy'], data['e0'][filename])].index.values[0]
e0_ind = data['post_edge_fit_data'].loc[data['post_edge_fit_data']['ZapEnergy'] == find_nearest(data['post_edge_fit_data']['ZapEnergy'], data['e0_diff'][filename])].index.values[0]
#norm = data['post_edge_fit_data'][filename].iloc[find_nearest(data['post_edge_fit_data'][filename], data['e0'][filename])]
normalisation_constant = data['post_edge_fit_data'][filename].iloc[e0_ind] - data['pre_edge_fit_data'][filename].iloc[e0_ind]
normalised_df.insert(1, filename, data['xanes_data'][filename] / normalisation_constant)
if options['normalisation_store_data']:
pre_edge_fit_data_norm.insert(1, filename, data['pre_edge_fit_data'][filename] / normalisation_constant)
post_edge_fit_data_norm.insert(1, filename, data['post_edge_fit_data'][filename] / normalisation_constant)
if options['normalisation_store_data']:
data['xanes_data'] = normalised_df
# Normalise the pre-edge and post-edge fit function data
data['pre_edge_fit_data'][filename] = data['pre_edge_fit_data'][filename] / normalisation_constant
data['post_edge_fit_data'][filename] = data['post_edge_fit_data'][filename] / normalisation_constant
data['pre_edge_fit_data_norm'] = pre_edge_fit_data_norm
data['post_edge_fit_data_norm'] = post_edge_fit_data_norm
data['normalisation_constants'][filename] = normalisation_constant
if options['save_values']:
data['xanes_data'] = normalised_df
return normalised_df
@ -760,11 +829,11 @@ def normalise(data: dict, options={}):
def flatten(data:dict, options={}):
#only picking out zapenergy-values higher than edge position (edge pos and below remains untouched)
required_options = ['log', 'logfile', 'save_values']
required_options = ['log', 'logfile', 'flatten_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_flattening.log',
'save_values': True
'flatten_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -772,13 +841,14 @@ def flatten(data:dict, options={}):
flattened_df = pd.DataFrame(data['xanes_data']['ZapEnergy'])
for filename in data['path']:
fit_function_diff = -data['post_edge_fit_data'][filename] + data['pre_edge_params'][filename][0]
fit_function_diff.loc[flattened_df['ZapEnergy'] <= data['e0'][filename]] = 0
fit_function_diff = data['post_edge_fit_data_norm'][filename] - 1
fit_function_diff.loc[flattened_df['ZapEnergy'] <= data['e0_diff'][filename]] = 0
flattened_df[filename] = data['xanes_data'][filename] - fit_function_diff
if options['save_values']:
if options['flatten_store_data']:
data['xanes_data'] = flattened_df