diff --git a/nafuma/xanes/calib.py b/nafuma/xanes/calib.py index f11ff93..5579574 100644 --- a/nafuma/xanes/calib.py +++ b/nafuma/xanes/calib.py @@ -356,4 +356,30 @@ def finding_e0(path, options={}): print("Edge shift estimated by the double differential zero-point is "+str(round(edge_shift_doublediff,5))) if options['print'] == True: ax4.axvline(x=edge_shift_doublediff,color="green") + + return df_smooth, filenames, edge_shift_diff + +def normalization(data,options={}): + required_options = ['print'] + default_options = { + 'print': False, + } + options = aux.update_options(options=options, required_options=required_options, default_options=default_options) + + #Finding the normalization constant ยต_0(E_0), by subtracting the value of the pre-edge-line from the value of the post-edge line at e0 + normalization_constant=post_edge_fit_function(e0) - pre_edge_fit_function(e0) + #subtracting background (as in pre_edge_subtraction) + + #dividing the background-subtracted data with the normalization constant + + +def flattening(data,options={}): + #only picking out zapenergy-values higher than edge position (edge pos and below remains untouched) + df_e0_and_above=df.loc[df['ZapEnergy'] > edge_shift_diff] + + flattened_data = post_edge_fit_function(df_e0_and_above['ZapEnergy']) - pre_edge_fit_function(df_e0_and_above['ZapEnergy']) + + #make a new dataframe with flattened values + +