Optimizing code and splitting into smaller functions
This commit is contained in:
parent
b0130d49b8
commit
872ae759b2
2 changed files with 68 additions and 59 deletions
|
|
@ -3,7 +3,8 @@ import numpy as np
|
|||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import beamtime.auxillary as aux
|
||||
|
||||
import beamtime.xanes as xas
|
||||
import beamtime.xanes.io as io
|
||||
def rbkerbest():
|
||||
print("ROSENBORG!<3")
|
||||
|
||||
|
|
@ -14,99 +15,108 @@ def rbkerbest():
|
|||
|
||||
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
|
||||
|
||||
#Tryiung to make a function that can decide which edge it is based on the first ZapEnergy-value
|
||||
def finding_edge(df):
|
||||
if 5.9 < df["ZapEnergy"][0] < 6.5:
|
||||
edge='Mn'
|
||||
return(edge)
|
||||
if 8.0 < df["ZapEnergy"][0] < 8.6:
|
||||
edge='Ni'
|
||||
return(edge)
|
||||
|
||||
def pre_edge_subtraction(df,filenames, options={}):
|
||||
#def pre_edge_subtraction(df,filenames, options={}):
|
||||
def test(innmat):
|
||||
df_test= xas.io.put_in_dataframe(innmat)
|
||||
print(df_test)
|
||||
|
||||
required_options = ['edge', 'print']
|
||||
def pre_edge_subtraction(path, options={}):
|
||||
required_options = ['print','troubleshoot']
|
||||
default_options = {
|
||||
'edge' : 'Mn',
|
||||
'print': False
|
||||
'print': False,
|
||||
'troubleshoot': False
|
||||
}
|
||||
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
|
||||
|
||||
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
|
||||
if str(options['edge']) == 'Mn':
|
||||
filenames = xas.io.get_filenames(path)
|
||||
df= xas.io.put_in_dataframe(path)
|
||||
edge=finding_edge(df)
|
||||
|
||||
#Defining the end of the region used to define the background, thus start of the edge
|
||||
#implement widget
|
||||
if edge == 'Mn':
|
||||
edge_start = 6.45
|
||||
if str(options['edge']) == 'Ni':
|
||||
if edge == 'Ni':
|
||||
edge_start = 8.3
|
||||
|
||||
#making a dataframe only containing the rows that are included in the background subtraction (points lower than where the edge start is defined)
|
||||
df_start=df.loc[df["ZapEnergy"] < edge_start]
|
||||
|
||||
#making a function to check the difference between values in the list and the defined start of the edge (where background regression will stop):
|
||||
absolute_difference_function = lambda list_value : abs(list_value - edge_start)
|
||||
|
||||
#finding the energy data point value that is closest to what I defined as the end of the background
|
||||
edge_start_value = min(df["ZapEnergy"], key=absolute_difference_function)
|
||||
|
||||
#Finding what the index of the edge shift end point is
|
||||
start_index=df[df["ZapEnergy"]==edge_start_value].index.values[0]
|
||||
|
||||
#Defining x-range for linear background fit, ending at the edge start index
|
||||
df_start=df[0:start_index]
|
||||
|
||||
#Making a new dataframe, with only the ZapEnergies as the first column
|
||||
df_background = pd.DataFrame(df["ZapEnergy"])
|
||||
#Making a new dataframe, with only the ZapEnergies as the first column -> will be filled to include the background data
|
||||
df_bkgd = pd.DataFrame(df["ZapEnergy"])
|
||||
|
||||
for files in filenames:
|
||||
|
||||
#Fitting linear function to the pre-edge
|
||||
#Fitting linear function to the background
|
||||
d = np.polyfit(df_start["ZapEnergy"],df_start[files],1)
|
||||
function_pre = np.poly1d(d)
|
||||
function_bkgd = np.poly1d(d)
|
||||
|
||||
#making a list, y_pre,so the background will be applied to all ZapEnergy-values
|
||||
y_pre=function_pre(df["ZapEnergy"])
|
||||
y_bkgd=function_bkgd(df["ZapEnergy"])
|
||||
|
||||
#adding a new column in df_background with the y-values of the background
|
||||
df_background.insert(1,files,y_pre)
|
||||
df_bkgd.insert(1,files,y_bkgd)
|
||||
|
||||
|
||||
if options['troubleshoot'] == True:
|
||||
### FOR FIGURING OUT WHERE IT GOES WRONG/WHICH FILE IS CORRUPT
|
||||
ax = df.plot(x = "ZapEnergy",y=files)
|
||||
#Plotting the calculated pre-edge background with the region used for the regression
|
||||
|
||||
### FOR FIGURING OUT WHERE IT GOES WRONG/WHICH FILES IS CORRUPT
|
||||
#ax = df.plot(x = "ZapEnergy",y=files)
|
||||
|
||||
if options['print'] == True:
|
||||
#Plotting an example of the edge_start region and the fitted background that will later be subtracted
|
||||
ax = df.plot(x = "ZapEnergy",y=filenames[0]) #defining x and y
|
||||
plt.axvline(x = edge_start_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_background.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
|
||||
|
||||
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(15,5))
|
||||
df.plot(x = "ZapEnergy",y=filenames[0],ax=ax1) #defining x and y
|
||||
plt.axvline(x = max(df_start["ZapEnergy"]))
|
||||
#fig = plt.figure(figsize=(15,15))
|
||||
df_bkgd.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax1)
|
||||
ax1.set_title('Data and fitted background')
|
||||
###################### Subtracting the pre edge from xmap_roi00 ################
|
||||
#making a new dataframe to insert the background subtracted intensities
|
||||
df_new = pd.DataFrame(df["ZapEnergy"])
|
||||
df_bkgd_sub = pd.DataFrame(df["ZapEnergy"])
|
||||
#inserting the pre_edge-background subtracted original xmap_roi00 data
|
||||
|
||||
for files in filenames:
|
||||
newintensity_calc=df[files]-df_background[files]
|
||||
df_new.insert(1,files,newintensity_calc)
|
||||
newintensity_calc=df[files]-df_bkgd[files]
|
||||
df_bkgd_sub.insert(1,files,newintensity_calc)
|
||||
|
||||
if options['print'] == True:
|
||||
#Plotting original data (black) and background subtracted data (red)
|
||||
ax = df.plot(x = "ZapEnergy",y=filenames[0], color="Black")
|
||||
plt.axvline(x = edge_start_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_new.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
|
||||
return df_new
|
||||
df.plot(x = "ZapEnergy",y=filenames[0], color="Black", ax=ax2, legend=False)
|
||||
plt.axvline(x = max(df_start["ZapEnergy"]))
|
||||
df_bkgd_sub.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax2, legend=False)
|
||||
ax2.set_title('Data and background-subtracted data')
|
||||
|
||||
def post_edge_normalization(df,df_new,filenames, options={}):
|
||||
return df_bkgd_sub
|
||||
|
||||
required_options = ['edge', 'print']
|
||||
def post_edge_normalization(df,df_backg_sub,filenames, options={}):
|
||||
|
||||
required_options = ['print']
|
||||
default_options = {
|
||||
'edge' : 'Mn',
|
||||
'print': False
|
||||
}
|
||||
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
|
||||
|
||||
edge=finding_edge(df)
|
||||
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
|
||||
if str(options['edge']) == 'Mn':
|
||||
#Implement widget
|
||||
if edge == 'Mn':
|
||||
edge_stop = 6.565
|
||||
if str(options['edge']) == 'Ni':
|
||||
if edge == 'Ni':
|
||||
edge_stop = 8.361
|
||||
|
||||
absolute_difference_function = lambda list_value : abs(list_value - edge_stop)
|
||||
edge_stop_value = min(df_new["ZapEnergy"], key=absolute_difference_function)
|
||||
end_index=df_new[df_new["ZapEnergy"]==edge_stop_value].index.values[0]
|
||||
edge_stop_value = min(df_backg_sub["ZapEnergy"], key=absolute_difference_function)
|
||||
end_index=df_backg_sub[df_backg_sub["ZapEnergy"]==edge_stop_value].index.values[0]
|
||||
#Defining x-range for linear fit
|
||||
df_fix=df_new
|
||||
df_fix=df_backg_sub
|
||||
df_fix.dropna(inplace=True) #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
|
||||
df_end=df_fix[end_index:] #The region of interest for the post edge
|
||||
#print(df_end)
|
||||
|
|
@ -125,14 +135,13 @@ def post_edge_normalization(df,df_new,filenames, options={}):
|
|||
#print(df_postedge)
|
||||
#Plotting the background subtracted signal with the post-edge regression line and the start point for the linear regression line
|
||||
if options['print'] == True:
|
||||
ax = df_new.plot(x = "ZapEnergy",y=filenames) #defining x and y
|
||||
ax = df_backg_sub.plot(x = "ZapEnergy",y=filenames) #defining x and y
|
||||
plt.axvline(x = edge_stop_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
|
||||
#print(function_post_list)
|
||||
#print(function_post)
|
||||
ax = df_new.plot(x = "ZapEnergy",y=filenames, legend=False) #defining x and y
|
||||
ax = df_backg_sub.plot(x = "ZapEnergy",y=filenames, legend=False) #defining x and y
|
||||
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
|
||||
plt.axvline(x = edge_stop_value)
|
||||
|
||||
|
||||
|
|
@ -1,7 +1,7 @@
|
|||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
def split_xanes_scan(root, destination=None, replace=False):
|
||||
#root is the path to the beamtime-folder
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue