ADd interactive mode for pre and post edge fitting

This commit is contained in:
rasmusvt 2022-06-27 12:20:49 +02:00
parent 931b3e42ae
commit 8e0d8f4861

View file

@ -5,10 +5,13 @@ import numpy as np
import os
import matplotlib.pyplot as plt
import nafuma.auxillary as aux
import nafuma.plotting as btp
import nafuma.xanes as xas
import nafuma.xanes.io as io
from scipy.signal import savgol_filter
from datetime import datetime
import ipywidgets as widgets
from IPython.display import display
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
@ -43,13 +46,15 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
# FIXME Add log-file
required_options = ['pre_edge_start', 'log', 'logfile', 'save_plots', 'save_folder']
required_options = ['pre_edge_limit', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'interactive']
default_options = {
'pre_edge_start': None,
'pre_edge_limit': [None, None],
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_pre_edge_fit.log',
'show_plots': False,
'save_plots': False,
'save_folder': './'
'save_folder': './',
'interactive': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -57,23 +62,34 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
if options['log']:
aux.write_log(message='Starting pre edge fit', options=options)
# FIXME Implement with finding accurate edge position
# FIXME Allow specification of start of pre-edge area
# Find the cutoff point at which the edge starts - everything to the LEFT of this point will be used in the pre edge function fit
if not options['pre_edge_start']:
if not options['pre_edge_limit'][0]:
options['pre_edge_limit'][0] = data['xanes_data_original']['ZapEnergy'].min()
if not options['pre_edge_limit'][1]:
pre_edge_limit_offset = 0.03
data['edge'] = find_element(data)
edge_position = estimate_edge_position(data, options, index=0)
pre_edge_limit = edge_position - pre_edge_limit_offset
options['pre_edge_limit'][1] = edge_position - pre_edge_limit_offset
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
pre_edge_fit_interactive(data=data, options=options)
return
# FIXME There should be an option to specify the interval in which to fit the background - now it is taking everything to the left of edge_start parameter, but if there are some artifacts in this area, it should be possible to
# limit the interval
# Making a dataframe only containing the rows that are included in the background subtraction (points lower than where the edge start is defined)
pre_edge_data = data['xanes_data_original'].loc[data['xanes_data_original']["ZapEnergy"] < pre_edge_limit]
pre_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['pre_edge_limit'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['pre_edge_limit'][1])]
# Making a new dataframe, with only the ZapEnergies as the first column -> will be filled to include the background data
pre_edge_fit_data = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
@ -96,16 +112,12 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
#adding a new column in df_background with the y-values of the background
pre_edge_fit_data.insert(1,filename,background)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_fit.png'
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(10,5))
if options['show_plots'] or options['save_plots']:
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,10))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
pre_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.axvline(x = max(pre_edge_data['ZapEnergy']), ls='--')
ax1.axvline(x = min(pre_edge_data['ZapEnergy']), ls='--')
ax1.set_title(f'{os.path.basename(filename)} - Full view', size=20)
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax2)
@ -115,9 +127,15 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
ax2.set_ylim([min(pre_edge_data[filename]), max(pre_edge_data[filename])])
ax2.set_title(f'{os.path.basename(filename)} - Fit region', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
plt.savefig(dst, transparent=False)
plt.close()
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_fit.png'
plt.savefig(dst, transparent=False)
if not options['show_plots']:
plt.close()
if options['log']:
@ -127,6 +145,21 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
def pre_edge_fit_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(pre_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
pre_edge_limit=widgets.FloatRangeSlider(value=[options['pre_edge_limit'][0], options['pre_edge_limit'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001)
)
options['widget'] = w
display(w)
def pre_edge_subtraction(data: dict, options={}):
required_options = ['log', 'logfile', 'save_plots', 'save_folder']
@ -171,30 +204,43 @@ def pre_edge_subtraction(data: dict, options={}):
def post_edge_fit(data: dict, options={}):
#FIXME should be called "fitting post edge" (normalization is not done here, need edge shift position)
required_options = ['log', 'logfile', 'post_edge_interval']
required_options = ['log', 'logfile', 'post_edge_limit', 'interactive']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_post_edge_fit.log',
'post_edge_interval': [None, None],
'post_edge_limit': [None, None],
'interactive': False,
'show_plots': False,
'save_plots': False,
'save_folder': './',
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not options['post_edge_interval'][0]:
if not options['post_edge_limit'][0]:
post_edge_limit_offset = 0.03
data['edge'] = find_element(data)
edge_position = estimate_edge_position(data, options, index=0)
options['post_edge_interval'][0] = edge_position + post_edge_limit_offset
options['post_edge_limit'][0] = edge_position + post_edge_limit_offset
if not options['post_edge_interval'][1]:
options['post_edge_interval'][1] = data['xanes_data_original']['ZapEnergy'].max()
if not options['post_edge_limit'][1]:
options['post_edge_limit'][1] = data['xanes_data_original']['ZapEnergy'].max()
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
post_edge_fit_interactive(data=data, options=options)
return
post_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['post_edge_interval'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['post_edge_interval'][1])]
post_edge_data.dropna(inplace=True) #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
post_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['post_edge_limit'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['post_edge_limit'][1])]
post_edge_data = post_edge_data.dropna() #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
# Making a new dataframe, with only the ZapEnergies as the first column -> will be filled to include the background data
post_edge_fit_data = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
@ -217,16 +263,14 @@ def post_edge_fit(data: dict, options={}):
#adding a new column in df_background with the y-values of the background
post_edge_fit_data.insert(1,filename,background)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if options['save_plots'] or options['show_plots']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_post_edge_fit.png'
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(10,5))
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,10))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
post_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.axvline(x = max(post_edge_data['ZapEnergy']), ls='--')
ax1.axvline(x = min(post_edge_data['ZapEnergy']), ls='--')
ax1.set_title(f'{os.path.basename(filename)} - Full view', size=20)
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax2)
@ -236,13 +280,32 @@ def post_edge_fit(data: dict, options={}):
ax2.set_ylim([min(post_edge_data[filename]), max(post_edge_data[filename])])
ax2.set_title(f'{os.path.basename(filename)} - Fit region', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
plt.savefig(dst, transparent=False)
plt.close()
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_post_edge_fit.png'
plt.savefig(dst, transparent=False)
if not options['show_plots']:
plt.close()
return post_edge_fit_data
def post_edge_fit_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(post_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
post_edge_limit=widgets.FloatRangeSlider(value=[options['post_edge_limit'][0], options['post_edge_limit'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001)
)
options['widget'] = w
display(w)
def smoothing(data: dict, options={}):
# FIXME Add logging
@ -295,7 +358,7 @@ def smoothing(data: dict, options={}):
ax2.set_title(f'{os.path.basename(filename)} - Smooth (default values)', size=20)
elif not options['save_default']:
fig, ax = plt.subplots(figsize=(10,5))
fig, ax = plt.subplots(figsize=(20,10))
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax)
ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])