Working on the calibration of the XANES-data, subtracting background and defining post-edge
This commit is contained in:
parent
7c95135c33
commit
b0130d49b8
1 changed files with 118 additions and 74 deletions
|
|
@ -1,6 +1,8 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import beamtime.auxillary as aux
|
||||
|
||||
def rbkerbest():
|
||||
print("ROSENBORG!<3")
|
||||
|
|
@ -13,82 +15,124 @@ def rbkerbest():
|
|||
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
|
||||
|
||||
|
||||
def split_xanes_scan(root, destination=None, replace=False):
|
||||
#root is the path to the beamtime-folder
|
||||
#destination should be the path to the processed data
|
||||
def pre_edge_subtraction(df,filenames, options={}):
|
||||
|
||||
#insert a for-loop to go through all the folders.dat-files in the folder root\xanes\raw
|
||||
required_options = ['edge', 'print']
|
||||
default_options = {
|
||||
'edge' : 'Mn',
|
||||
'print': False
|
||||
}
|
||||
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
|
||||
|
||||
with open(filename, 'r') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
datas = []
|
||||
data = []
|
||||
headers = []
|
||||
header = ''
|
||||
start = False
|
||||
|
||||
for line in lines:
|
||||
if line[0:2] == "#L":
|
||||
start = True
|
||||
header = line[2:].split()
|
||||
continue
|
||||
|
||||
elif line[0:2] == "#C":
|
||||
start = False
|
||||
|
||||
if data:
|
||||
datas.append(data)
|
||||
data = []
|
||||
|
||||
if header:
|
||||
headers.append(header)
|
||||
header = ''
|
||||
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
|
||||
if str(options['edge']) == 'Mn':
|
||||
edge_start = 6.45
|
||||
if str(options['edge']) == 'Ni':
|
||||
edge_start = 8.3
|
||||
|
||||
|
||||
#making a function to check the difference between values in the list and the defined start of the edge (where background regression will stop):
|
||||
absolute_difference_function = lambda list_value : abs(list_value - edge_start)
|
||||
|
||||
if start == False:
|
||||
continue
|
||||
#finding the energy data point value that is closest to what I defined as the end of the background
|
||||
edge_start_value = min(df["ZapEnergy"], key=absolute_difference_function)
|
||||
|
||||
else:
|
||||
data.append(line.split())
|
||||
#Finding what the index of the edge shift end point is
|
||||
start_index=df[df["ZapEnergy"]==edge_start_value].index.values[0]
|
||||
|
||||
#Defining x-range for linear background fit, ending at the edge start index
|
||||
df_start=df[0:start_index]
|
||||
|
||||
#Making a new dataframe, with only the ZapEnergies as the first column
|
||||
df_background = pd.DataFrame(df["ZapEnergy"])
|
||||
|
||||
for files in filenames:
|
||||
|
||||
#Fitting linear function to the pre-edge
|
||||
d = np.polyfit(df_start["ZapEnergy"],df_start[files],1)
|
||||
function_pre = np.poly1d(d)
|
||||
|
||||
#making a list, y_pre,so the background will be applied to all ZapEnergy-values
|
||||
y_pre=function_pre(df["ZapEnergy"])
|
||||
|
||||
#adding a new column in df_background with the y-values of the background
|
||||
df_background.insert(1,files,y_pre)
|
||||
|
||||
#Plotting the calculated pre-edge background with the region used for the regression
|
||||
|
||||
### FOR FIGURING OUT WHERE IT GOES WRONG/WHICH FILES IS CORRUPT
|
||||
#ax = df.plot(x = "ZapEnergy",y=files)
|
||||
|
||||
if options['print'] == True:
|
||||
#Plotting an example of the edge_start region and the fitted background that will later be subtracted
|
||||
ax = df.plot(x = "ZapEnergy",y=filenames[0]) #defining x and y
|
||||
plt.axvline(x = edge_start_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_background.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
|
||||
|
||||
###################### Subtracting the pre edge from xmap_roi00 ################
|
||||
#making a new dataframe to insert the background subtracted intensities
|
||||
df_new = pd.DataFrame(df["ZapEnergy"])
|
||||
#inserting the pre_edge-background subtracted original xmap_roi00 data
|
||||
|
||||
for files in filenames:
|
||||
newintensity_calc=df[files]-df_background[files]
|
||||
df_new.insert(1,files,newintensity_calc)
|
||||
|
||||
if options['print'] == True:
|
||||
#Plotting original data (black) and background subtracted data (red)
|
||||
ax = df.plot(x = "ZapEnergy",y=filenames[0], color="Black")
|
||||
plt.axvline(x = edge_start_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_new.plot(x="ZapEnergy", y=filenames[0],color="Red",ax=ax)
|
||||
return df_new
|
||||
|
||||
def post_edge_normalization(df,df_new,filenames, options={}):
|
||||
|
||||
required_options = ['edge', 'print']
|
||||
default_options = {
|
||||
'edge' : 'Mn',
|
||||
'print': False
|
||||
}
|
||||
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
|
||||
|
||||
#Defining the end of the pre-edge-region for Mn/Ni, thus start of the edge
|
||||
if str(options['edge']) == 'Mn':
|
||||
edge_stop = 6.565
|
||||
if str(options['edge']) == 'Ni':
|
||||
edge_stop = 8.361
|
||||
|
||||
absolute_difference_function = lambda list_value : abs(list_value - edge_stop)
|
||||
edge_stop_value = min(df_new["ZapEnergy"], key=absolute_difference_function)
|
||||
end_index=df_new[df_new["ZapEnergy"]==edge_stop_value].index.values[0]
|
||||
#Defining x-range for linear fit
|
||||
df_fix=df_new
|
||||
df_fix.dropna(inplace=True) #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
|
||||
df_end=df_fix[end_index:] #The region of interest for the post edge
|
||||
#print(df_end)
|
||||
#Fitting linear function to the pre-edge using the background corrected intensities to make the post edge fit
|
||||
df_postedge = pd.DataFrame(df["ZapEnergy"])
|
||||
|
||||
function_post_list=[]
|
||||
for files in filenames:
|
||||
d = np.polyfit(df_end["ZapEnergy"],df_end[files],1)
|
||||
function_post = np.poly1d(d)
|
||||
y_post=function_post(df["ZapEnergy"])
|
||||
function_post_list.append(function_post)
|
||||
df_postedge.insert(1,files,y_post) #adding a new column with the y-values of the fitted post edge
|
||||
|
||||
#print(filenames[0])
|
||||
#print(df_postedge)
|
||||
#Plotting the background subtracted signal with the post-edge regression line and the start point for the linear regression line
|
||||
if options['print'] == True:
|
||||
ax = df_new.plot(x = "ZapEnergy",y=filenames) #defining x and y
|
||||
plt.axvline(x = edge_stop_value)
|
||||
fig = plt.figure(figsize=(15,15))
|
||||
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
|
||||
#print(function_post_list)
|
||||
#print(function_post)
|
||||
ax = df_new.plot(x = "ZapEnergy",y=filenames, legend=False) #defining x and y
|
||||
df_postedge.plot(x="ZapEnergy", y=filenames,color="Green",ax=ax, legend=False)
|
||||
plt.axvline(x = edge_stop_value)
|
||||
|
||||
|
||||
|
||||
|
||||
edges = {'Mn': [6.0, 6.1, 6.2, 6.3, 6.4, 6.5], 'Fe': [6.8, 6.9, 7.0, 7.1, 7.2], 'Co': [7.6, 7.7, 7.8, 7.9], 'Ni': [8.1, 8.2, 8.3, 8.4, 8.5]}
|
||||
edge_count = {'Mn': 0, 'Fe': 0, 'Co': 0, 'Ni': 0}
|
||||
|
||||
|
||||
for ind, data in enumerate(datas):
|
||||
df = pd.DataFrame(data)
|
||||
df.columns = headers[ind]
|
||||
|
||||
edge_start = np.round((float(df["ZapEnergy"].min())), 1)
|
||||
|
||||
for edge, energies in edges.items():
|
||||
if edge_start in energies:
|
||||
edge_actual = edge
|
||||
edge_count[edge] += 1
|
||||
|
||||
|
||||
|
||||
filename = filename.split('/')[-1]
|
||||
count = str(edge_count[edge_actual]).zfill(4)
|
||||
|
||||
|
||||
# Save
|
||||
if destination:
|
||||
cwd = os.getcwd()
|
||||
|
||||
if not os.path.isdir(destination):
|
||||
os.mkdir(destination)
|
||||
|
||||
os.chdir(destination)
|
||||
|
||||
df.to_csv('{}_{}_{}.dat'.format(filename.split('.')[0], edge_actual, count))
|
||||
|
||||
os.chdir(cwd)
|
||||
|
||||
else:
|
||||
df.to_csv('{}_{}_{}.dat'.format(filename.split('.')[0], edge_actual, count))
|
||||
Loading…
Add table
Add a link
Reference in a new issue