Merge pull request #8 from rasmusthog/rasmus_xanes_interactive

Rasmus xanes interactive
This commit is contained in:
Rasmus Vester Thøgersen 2022-06-29 15:27:43 +02:00 committed by GitHub
commit c0af1dc84c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 502 additions and 174 deletions

View file

@ -12,11 +12,21 @@ def update_options(options, required_options, default_options):
return options
def save_options(options, path):
def save_options(options, path, ignore=None):
''' Saves any options dictionary to a JSON-file in the specified path'''
options_copy = options.copy()
if ignore:
if not isinstance(ignore, list):
ignore = [ignore]
for i in ignore:
options_copy[i] = 'Removed'
with open(path, 'w') as f:
json.dump(options,f)
json.dump(options_copy,f, skipkeys=True, indent=4)
def load_options(path):

View file

@ -1 +1 @@
from . import io, calib
from . import io, calib, edges

View file

@ -5,10 +5,13 @@ import numpy as np
import os
import matplotlib.pyplot as plt
import nafuma.auxillary as aux
import nafuma.plotting as btp
import nafuma.xanes as xas
import nafuma.xanes.io as io
from scipy.signal import savgol_filter
from datetime import datetime
import ipywidgets as widgets
from IPython.display import display
##Better to make a new function that loops through the files, and performing the split_xanes_scan on
@ -43,13 +46,19 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
# FIXME Add log-file
required_options = ['pre_edge_start', 'log', 'logfile', 'save_plots', 'save_folder']
required_options = ['pre_edge_limits', 'pre_edge_masks', 'pre_edge_polyorder', 'pre_edge_store_data', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'ylim', 'interactive']
default_options = {
'pre_edge_start': None,
'pre_edge_limits': [None, None],
'pre_edge_masks': [],
'pre_edge_polyorder': 1,
'pre_edge_store_data': False,
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_pre_edge_fit.log',
'show_plots': False,
'save_plots': False,
'save_folder': './'
'save_folder': './',
'ylim': [None, None],
'interactive': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -57,23 +66,40 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
if options['log']:
aux.write_log(message='Starting pre edge fit', options=options)
# FIXME Implement with finding accurate edge position
# FIXME Allow specification of start of pre-edge area
# Find the cutoff point at which the edge starts - everything to the LEFT of this point will be used in the pre edge function fit
if not options['pre_edge_start']:
if not options['pre_edge_limits'][0]:
options['pre_edge_limits'][0] = data['xanes_data_original']['ZapEnergy'].min()
if not options['pre_edge_limits'][1]:
pre_edge_limit_offset = 0.03
data['edge'] = find_element(data)
edge_position = estimate_edge_position(data, options, index=0)
pre_edge_limit = edge_position - pre_edge_limit_offset
options['pre_edge_limits'][1] = edge_position - pre_edge_limit_offset
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
pre_edge_fit_interactive(data=data, options=options)
return
# FIXME There should be an option to specify the interval in which to fit the background - now it is taking everything to the left of edge_start parameter, but if there are some artifacts in this area, it should be possible to
# limit the interval
# Making a dataframe only containing the rows that are included in the background subtraction (points lower than where the edge start is defined)
pre_edge_data = data['xanes_data_original'].loc[data['xanes_data_original']["ZapEnergy"] < pre_edge_limit]
pre_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['pre_edge_limits'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['pre_edge_limits'][1])].copy()
for mask in options['pre_edge_masks']:
pre_edge_data.loc[(pre_edge_data['ZapEnergy'] > mask[0]) & (pre_edge_data['ZapEnergy'] < mask[1])] = np.nan
pre_edge_data = pre_edge_data.dropna()
# Making a new dataframe, with only the ZapEnergies as the first column -> will be filled to include the background data
pre_edge_fit_data = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
@ -82,10 +108,10 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
for i, filename in enumerate(data['path']):
if options['log']:
aux.write_log(message=f'Fitting background on {os.path.basename(filename)} ({i+1} / {len(data["path"])})', options=options)
aux.write_log(message=f'Fitting background on {os.path.basename(filename)} ({i+1}/{len(data["path"])})', options=options)
#Fitting linear function to the background
params = np.polyfit(pre_edge_data["ZapEnergy"],pre_edge_data[filename],1)
params = np.polyfit(pre_edge_data["ZapEnergy"],pre_edge_data[filename],options['pre_edge_polyorder'])
fit_function = np.poly1d(params)
data['pre_edge_params'][filename] = params
@ -96,18 +122,22 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
#adding a new column in df_background with the y-values of the background
pre_edge_fit_data.insert(1,filename,background)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_fit.png'
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(10,5))
if options['show_plots'] or options['save_plots']:
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,10))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
pre_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.axvline(x = max(pre_edge_data['ZapEnergy']), ls='--')
ax1.axvline(x = min(pre_edge_data['ZapEnergy']), ls='--')
ax1.set_title(f'{os.path.basename(filename)} - Full view', size=20)
if options['ylim'][0] != None:
ax1.set_ylim(bottom=options['ylim'][0])
if options['ylim'][1]:
ax1.set_ylim(top=options['ylim'][1])
for mask in options['pre_edge_masks']:
ax1.fill_between(x=mask, y1=0, y2=data['xanes_data_original'][filename].max()*2, alpha=0.2, color='black')
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax2)
pre_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
ax2.axvline(x = max(pre_edge_data['ZapEnergy']), ls='--')
@ -115,26 +145,53 @@ def pre_edge_fit(data: dict, options={}) -> pd.DataFrame:
ax2.set_ylim([min(pre_edge_data[filename]), max(pre_edge_data[filename])])
ax2.set_title(f'{os.path.basename(filename)} - Fit region', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
plt.savefig(dst, transparent=False)
plt.close()
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_fit.png'
plt.savefig(dst, transparent=False)
if not options['show_plots']:
plt.close()
if options['log']:
aux.write_log(message=f'Pre edge fitting done.', options=options)
if options['pre_edge_store_data']:
data['pre_edge_fit_data'] = pre_edge_fit_data
return pre_edge_fit_data
def pre_edge_fit_interactive(data: dict, options: dict) -> None:
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(pre_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
pre_edge_limits=widgets.FloatRangeSlider(value=[options['pre_edge_limits'][0], options['pre_edge_limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001),
pre_edge_store_data=widgets.Checkbox(value=options['pre_edge_store_data'])
)
options['widget'] = w
display(w)
def pre_edge_subtraction(data: dict, options={}):
required_options = ['log', 'logfile', 'save_plots', 'save_folder']
required_options = ['log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'pre_edge_subtraction_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_pre_edge_subtraction.log',
'show_plots': False,
'save_plots': False,
'save_folder': './'
'save_folder': './',
'pre_edge_subtraction_store_data': False
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -149,19 +206,28 @@ def pre_edge_subtraction(data: dict, options={}):
xanes_data_bkgd_subtracted.insert(1, filename, data['xanes_data_original'][filename] - data['pre_edge_fit_data'][filename])
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if options['save_plots'] or options['show_plots']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_subtraction.png'
fig, ax = plt.subplots(figsize=(10,5))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax)
xanes_data_bkgd_subtracted.plot(x='ZapEnergy', y=filename, color='red', ax=ax)
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax, label='Original data')
xanes_data_bkgd_subtracted.plot(x='ZapEnergy', y=filename, color='red', ax=ax, label='Pre edge subtracted')
ax.set_title(f'{os.path.basename(filename)} - After subtraction', size=20)
plt.savefig(dst)
plt.close()
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_pre_edge_subtraction.png'
plt.savefig(dst)
if not options['show_plots']:
plt.close()
if options['pre_edge_subtraction_store_data']:
data['xanes_data'] = xanes_data_bkgd_subtracted
return xanes_data_bkgd_subtracted
@ -170,31 +236,57 @@ def pre_edge_subtraction(data: dict, options={}):
def post_edge_fit(data: dict, options={}):
#FIXME should be called "fitting post edge" (normalization is not done here, need edge shift position)
required_options = ['log', 'logfile', 'post_edge_interval']
''' Fit the post edge within the post_edge.limits to a polynomial of post_edge.polyorder order. Allows interactive plotting, as well as showing static plots and saving plots to drive.
Requires data to have already been read to data['xanes_data_original']
'''
required_options = ['log', 'logfile', 'post_edge_masks', 'post_edge_limits', 'post_edge_polyorder', 'post_edge_store_data', 'interactive', 'show_plots', 'save_plots', 'save_folder']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_post_edge_fit.log',
'post_edge_interval': [None, None],
'post_edge_limits': [None, None],
'post_edge_masks': [],
'post_edge_polyorder': 2,
'post_edge_store_data': False,
'interactive': False,
'show_plots': False,
'save_plots': False,
'save_folder': './',
'ylim': [None, None]
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not options['post_edge_interval'][0]:
if not options['post_edge_limits'][0]:
post_edge_limit_offset = 0.03
data['edge'] = find_element(data)
edge_position = estimate_edge_position(data, options, index=0)
options['post_edge_interval'][0] = edge_position + post_edge_limit_offset
options['post_edge_limits'][0] = edge_position + post_edge_limit_offset
if not options['post_edge_interval'][1]:
options['post_edge_interval'][1] = data['xanes_data_original']['ZapEnergy'].max()
if not options['post_edge_limits'][1]:
options['post_edge_limits'][1] = data['xanes_data_original']['ZapEnergy'].max()
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
post_edge_fit_interactive(data=data, options=options)
return
post_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['post_edge_interval'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['post_edge_interval'][1])]
post_edge_data.dropna(inplace=True) #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
post_edge_data = data['xanes_data_original'].loc[(data['xanes_data_original']["ZapEnergy"] > options['post_edge_limits'][0]) & (data['xanes_data_original']["ZapEnergy"] < options['post_edge_limits'][1])].copy()
for mask in options['post_edge_masks']:
post_edge_data.loc[(post_edge_data['ZapEnergy'] > mask[0]) & (post_edge_data['ZapEnergy'] < mask[1])] = np.nan
post_edge_data = post_edge_data.dropna() #Removing all indexes without any value, as some of the data sets misses the few last data points and fucks up the fit
# Making a new dataframe, with only the ZapEnergies as the first column -> will be filled to include the background data
post_edge_fit_data = pd.DataFrame(data['xanes_data_original']["ZapEnergy"])
@ -203,12 +295,15 @@ def post_edge_fit(data: dict, options={}):
for i, filename in enumerate(data['path']):
if options['log']:
aux.write_log(message=f'Fitting post edge on {os.path.basename(filename)} ({i+1} / {len(data["path"])})', options=options)
aux.write_log(message=f'Fitting post edge on {os.path.basename(filename)} ({i+1} / {len(data["path"])}) with polynomial order {options["post_edge_polyorder"]}', options=options)
#Fitting linear function to the background
params = np.polyfit(post_edge_data["ZapEnergy"], post_edge_data[filename], 2)
params = np.polyfit(post_edge_data["ZapEnergy"], post_edge_data[filename], options['post_edge_polyorder'])
fit_function = np.poly1d(params)
if options['log']:
aux.write_log(message=f'Post edge fitted with parameters: {params}')
data['post_edge_params'][filename] = params
#making a list, y_pre,so the background will be applied to all ZapEnergy-values
@ -217,18 +312,24 @@ def post_edge_fit(data: dict, options={}):
#adding a new column in df_background with the y-values of the background
post_edge_fit_data.insert(1,filename,background)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if options['save_plots'] or options['show_plots']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_post_edge_fit.png'
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(10,5))
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,10))
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax1)
post_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.axvline(x = max(post_edge_data['ZapEnergy']), ls='--')
ax1.axvline(x = min(post_edge_data['ZapEnergy']), ls='--')
ax1.set_title(f'{os.path.basename(filename)} - Full view', size=20)
for mask in options['post_edge_masks']:
ax1.fill_between(x=mask, y1=0, y2=data['xanes_data_original'][filename].max()*2, alpha=0.2, color='black')
if options['ylim'][0] != None:
ax1.set_ylim(bottom=options['ylim'][0])
if options['ylim'][1] != None:
ax1.set_ylim(top=options['ylim'][1])
data['xanes_data_original'].plot(x='ZapEnergy', y=filename, color='black', ax=ax2)
post_edge_fit_data.plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
ax2.axvline(x = max(post_edge_data['ZapEnergy']), ls='--')
@ -236,84 +337,171 @@ def post_edge_fit(data: dict, options={}):
ax2.set_ylim([min(post_edge_data[filename]), max(post_edge_data[filename])])
ax2.set_title(f'{os.path.basename(filename)} - Fit region', size=20)
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
plt.savefig(dst, transparent=False)
plt.close()
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_post_edge_fit.png'
plt.savefig(dst, transparent=False)
if not options['show_plots']:
plt.close()
if options['log']:
aux.write_log(message='Post edge fitting done!', options=options)
if options['post_edge_store_data']:
data['post_edge_fit_data'] = post_edge_fit_data
return post_edge_fit_data
def post_edge_fit_interactive(data: dict, options: dict) -> None:
''' Defines the widgets to use with the ipywidgets interactive mode and calls the update function found in btp.ipywidgets. '''
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(post_edge_fit), data=widgets.fixed(data), options=widgets.fixed(options),
post_edge_limits=widgets.FloatRangeSlider(value=[options['post_edge_limits'][0], options['post_edge_limits'][1]], min=data['xanes_data_original']['ZapEnergy'].min(), max=data['xanes_data_original']['ZapEnergy'].max(), step=0.001),
post_edge_store_data=widgets.Checkbox(value=options['post_edge_store_data'])
)
options['widget'] = w
display(w)
def smoothing(data: dict, options={}):
# FIXME Add logging
# FIXME Add saving of files
required_options = ['log', 'logfile', 'window_length','polyorder', 'save_default']
required_options = ['log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'interactive', 'smooth_window_length', 'smooth_algorithm', 'smooth_polyorder', 'smooth_save_default', 'smooth_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_smoothing.log',
'show_plots': False,
'save_plots': False,
'save_folder': './',
'window_length': 3,
'polyorder': 2,
'save_default': False
'interactive': False,
'smooth_window_length': 3,
'smooth_polyorder': 2,
'smooth_algorithm': 'savgol', # At the present, only Savitzky-Golay filter is implemented. Add Gaussian and Boxcar later.
'smooth_save_default': False,
'smooth_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
df_smooth = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['save_default']:
if options['smooth_save_default']:
df_smooth_default = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['log']:
aux.write_log(message='Starting smoothing.')
if options['interactive']:
data['xanes_data_backup'] = data['xanes_data']
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
smoothing_interactive(data=data, options=options)
return
# FIXME Add other types of filters
# FIXME Instead of assigning values directly to the data dictionary, these should be made into an own DataFrame that you can decide later what to do with - these variables should
# then be returned
for filename in data['path']:
df_smooth.insert(1, filename, savgol_filter(data['xanes_data'][filename], options['window_length'], options['polyorder']))
for i, filename in enumerate(data['path']):
if options['save_default']:
df_smooth_default.insert(1, filename, savgol_filter(data['xanes_data'][filename], default_options['window_length'], default_options['polyorder']))
if options['smooth_algorithm'] == 'savgol':
if options['log']:
aux.write_log(message=f'Smoothing {filename} with algorithm: {options["smooth_algorithm"]} ({i+1}/{len(data["path"])})', options=options)
df_smooth.insert(1, filename, savgol_filter(data['xanes_data'][filename], options['smooth_window_length'], options['smooth_polyorder']))
if options['smooth_save_default']:
if options['smooth_algorithm'] == 'savgol':
if options['log']:
aux.write_log(message=f'Smoothing {filename} using default parameters with algorithm: {options["smooth_algorithm"]} ({i+1}/{len(data["path"])})', options=options)
df_smooth_default.insert(1, filename, savgol_filter(data['xanes_data'][filename], default_options['smooth_window_length'], default_options['smooth_polyorder']))
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if options['save_plots'] or options['show_plots']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_smooth.png'
edge_pos = estimate_edge_position(data=data, options=options)
intensity_midpoint = df_smooth[filename].iloc[np.where(df_smooth['ZapEnergy'] == find_nearest(df_smooth['ZapEnergy'], edge_pos))].values[0]
step_length = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0]
if options['save_default']:
if options['smooth_save_default']:
fig, (ax1, ax2) = plt.subplots(1,2,figsize=(20,5))
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax1, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax1, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax1)
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth_default.loc[(df_smooth_default['ZapEnergy'] > edge_pos-0.0015) & (df_smooth_default['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth_default.loc[(df_smooth_default['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth_default['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
ax2.set_title(f'{os.path.basename(filename)} - Smooth (default values)', size=20)
elif not options['save_default']:
fig, ax = plt.subplots(figsize=(10,5))
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-0.0015) & (data['xanes_data']['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='black', ax=ax, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-0.0015) & (df_smooth['ZapEnergy'] < edge_pos+0.0015)].plot(x='ZapEnergy', y=filename, color='red', ax=ax)
ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])
ax.set_ylim([intensity_midpoint*0.9, intensity_midpoint*1.1])
elif not options['smooth_save_default']:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter', c='black')
df_smooth.plot(x='ZapEnergy', y=filename, ax=ax1, c='red')
ax.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
data['xanes_data'].loc[(data['xanes_data']['ZapEnergy'] > edge_pos-10*step_length) & (data['xanes_data']['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='black', ax=ax2, kind='scatter')
df_smooth.loc[(df_smooth['ZapEnergy'] > edge_pos-10*step_length) & (df_smooth['ZapEnergy'] < edge_pos+10*step_length)].plot(x='ZapEnergy', y=filename, color='red', ax=ax2)
#ax.set_xlim([edge_pos-0.0015, edge_pos+0.0015])
#ax.set_ylim([intensity_midpoint*0.9, intensity_midpoint*1.1])
ax1.set_title(f'{os.path.basename(filename)} - Smooth', size=20)
ax2.set_title(f'{os.path.basename(filename)} - Smooth Edge Region', size=20)
plt.savefig(dst, transparent=False)
plt.close()
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if not options['save_default']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_smooth.png'
plt.savefig(dst, transparent=False)
if not options['show_plots']:
plt.close()
if not options['smooth_save_default']:
df_smooth_default = None
if options['smooth_store_data']:
data['xanes_data'] = df_smooth
options['smooth_store_data'] = False
return df_smooth, df_smooth_default
def smoothing_interactive(data: dict, options: dict) -> None:
''' Defines the widgets to use with the ipywidgets interactive mode and calls the update function found in btp.ipywidgets. '''
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(smoothing), data=widgets.fixed(data), options=widgets.fixed(options),
smooth_window_length=widgets.IntSlider(value=options['smooth_window_length'], min=3, max=21, step=2),
smooth_polyorder=widgets.IntSlider(value=options['smooth_polyorder'], min=1, max=5, step=1),
smooth_store_data=widgets.Checkbox(value=options['smooth_store_data'])
)
options['widget'] = w
display(w)
def restore_from_backup(data):
if 'xanes_data_bakcup' in data.keys():
data['xanes_data'] = data['xanes_data_backup']
def find_nearest(array, value):
#function to find the value closes to "value" in an "array"
array = np.asarray(array)
@ -327,7 +515,7 @@ def estimate_edge_position(data: dict, options={}, index=0):
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_edge_position_estimation.log',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly
'periods': 6, #Periods needs to be an even number for the shifting of values to work properly
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -348,52 +536,85 @@ def estimate_edge_position(data: dict, options={}, index=0):
return estimated_edge_shift
def determine_edge_position(data: dict, options={}):
''' Determines the edge position by 1) first differential maximum and/or 2) second differential zero-point. Calculates differential and/or double differential by diff.periods and double_diff.periods respectively.
The differentiated and/or doubly differentiated data is fitted to a polynomial of diff.polyorder and/or double_diff.polyorder around the estimated edge position. The estimated edge position is set to be the x-value of the data
point at maximum of the differentiated data. The region to be fitted to the polynomial is determined by fit_region, which defaults to 5 times the distance between two data points, giving five data points to fit to.
required_options = ['save_values', 'log', 'logfile', 'save_plots', 'save_folder', 'periods', 'diff', 'double_diff', 'fit_region']
Allows plotting and saving of three plots to assess the quality of the fit, and also allows logging.
Requires that XANES-data is already loaded in data['xanes_data']. This allows the user to choose when to determine the edge position - whether before or after normalisation, flattening etc.'''
required_options = ['save_values', 'log', 'logfile', 'show_plots', 'save_plots', 'save_folder', 'diff', 'diff.polyorder', 'diff.periods', 'double_diff', 'double_diff.polyorder', 'double_diff.periods', 'points_around_edge']
default_options = {
'save_values': True,
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_determine_edge_position.log',
'save_plots': False,
'save_folder': './',
'periods': 2, #Periods needs to be an even number for the shifting of values to work properly,
'diff': True,
'double_diff': False,
'fit_region': 0.0005
'save_values': True, # Whether the edge positions should be stored in a dictionary within the main data dictionary.
'log': False, # Toggles logging on/off
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_determine_edge_position.log', # Sets the path to the logfile. Ignored if log == False
'show_plots': False, # Toggles on/off whether plots should be shown. For sequential data, saving the plots and inspecting them there is probably better.
'save_plots': False, # Toggles on/off whether plots should be saved.
'save_folder': './', # Sets the path to where the plots should be saved. Creates folder if doesn't exist. Ignored if save_plots == False
'diff': True, # Toggles calculation of the edge position based on differential data
'diff.polyorder': 2, # Sets the order of the polynomial to fit edge region of the differential to
'diff.periods': 2, # Sets the number of data points between which the first order difference should be calculated. Needs to be even for subsequent shifting of data to function.
'double_diff': False, # Toggles calculation of the edge position based on double differential data
'double_diff.polyorder': 1, # Sets the order of the polynomial to fit edge region of the double differential to
'double_diff.periods': 2, # Sets the number of data points between which the second order difference should be calculated. Needs to be even for subsequent shifting of data to function.
'points_around_edge': 5 # The length of the region to find points to fit to a function
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if options['periods'] % 2 == 1:
# Check if periods are even
if options['diff'] and options['diff.periods'] % 2 != 0:
if options['log']:
aux.write_log(message='Periods for differentiation is not even. Ending run.', options=options)
raise Exception("NB! Periods needs to be an even number for the shifting of values to work properly")
if options['double_diff'] and options['double_diff.periods'] % 2 != 0:
aux.write_log(message='Periods for double differentiation is not even. Ending run.', options=options)
raise Exception("NB! Periods needs to be an even number for the shifting of values to work properly")
#####
if options['interactive']:
data['xanes_data_backup'] = data['xanes_data']
options['interactive'] = False
options['interactive_session_active'] = True
options['show_plots'] = True
determine_edge_position_interactive(data=data, options=options)
return
# Prepare dataframes for differential data
if options['diff']:
df_diff = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['double_diff']:
df_double_diff = pd.DataFrame(data['xanes_data']['ZapEnergy'])
if options['save_values']:
data['e0'] = {}
data['e0_diff'] = {}
data['e0_double_diff'] = {}
# Get rough estimate of edge position
for i, filename in enumerate(data['path']):
estimated_edge_pos = estimate_edge_position(data, options=options, index=i)
#========================== fitting first differential ==========
fit_region = (options['points_around_edge']+1)*(data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0])
#========================== Fitting the first order derivative ==========
if options['diff']:
df_diff[filename] = data['xanes_data'][filename].diff(periods=options['periods'])
df_diff[filename]=df_diff[filename].shift(-int(options['periods']/2))
df_diff[filename] = data['xanes_data'][filename].diff(periods=options['diff.periods'])
df_diff[filename]=df_diff[filename].shift(-int(options['diff.periods']/2)) # Shifts the data back so that the difference between the points is located in the middle of the two points the caluclated difference is between
df_diff_edge = df_diff.loc[(df_diff["ZapEnergy"] < estimated_edge_pos+options['fit_region']) & ((df_diff["ZapEnergy"] > estimated_edge_pos-options['fit_region']))]
# Picks out the points to be fitted
df_diff_edge = df_diff.loc[(df_diff["ZapEnergy"] <= estimated_edge_pos+fit_region) & ((df_diff["ZapEnergy"] >= estimated_edge_pos-fit_region))]
# Fitting a function to the chosen interval
params = np.polyfit(df_diff_edge["ZapEnergy"], df_diff_edge[filename], 2)
params = np.polyfit(df_diff_edge["ZapEnergy"], df_diff_edge[filename], options['diff.polyorder'])
diff_function = np.poly1d(params)
x_diff=np.linspace(df_diff_edge["ZapEnergy"].iloc[0],df_diff_edge["ZapEnergy"].iloc[-1],num=10000)
@ -407,21 +628,21 @@ def determine_edge_position(data: dict, options={}):
edge_pos_diff=x_diff[np.where(y_diff == np.amax(y_diff))][0]
if options['log']:
aux.write_log(message=f"Edge position estimated by the differential maximum is: {str(round(edge_pos_diff,5))}", options=options)
aux.write_log(message=f"Edge position estimated by the differential maximum is: {str(round(edge_pos_diff,5))} keV", options=options)
if options['save_values']:
data['e0'][filename] = edge_pos_diff
data['e0_diff'][filename] = edge_pos_diff
#========================== Fitting the second order derivative ==========
if options['double_diff']:
df_double_diff[filename] = data['xanes_data'][filename].diff(periods=options['periods']).diff(periods=options['periods'])
df_double_diff[filename]=df_double_diff[filename].shift(-int(options['periods']))
df_double_diff[filename] = data['xanes_data'][filename].diff(periods=options['double_diff.periods']).diff(periods=options['double_diff.periods'])
df_double_diff[filename]=df_double_diff[filename].shift(-int(options['double_diff.periods']))
# Pick out region of interest
df_double_diff_edge = df_double_diff.loc[(df_double_diff["ZapEnergy"] < estimated_edge_pos+options['fit_region']) & ((df_double_diff["ZapEnergy"] > estimated_edge_pos-options['fit_region']))]
df_double_diff_edge = df_double_diff.loc[(df_double_diff["ZapEnergy"] < estimated_edge_pos+fit_region) & ((df_double_diff["ZapEnergy"] > estimated_edge_pos-fit_region))]
# Fitting a function to the chosen interval
params = np.polyfit(df_double_diff_edge["ZapEnergy"], df_double_diff_edge[filename], 2)
params = np.polyfit(df_double_diff_edge["ZapEnergy"], df_double_diff_edge[filename], options['double_diff.polyorder'])
double_diff_function = np.poly1d(params)
x_double_diff=np.linspace(df_double_diff_edge["ZapEnergy"].iloc[0], df_double_diff_edge["ZapEnergy"].iloc[-1],num=10000)
@ -436,67 +657,109 @@ def determine_edge_position(data: dict, options={}):
edge_pos_double_diff=x_double_diff[np.where(y_double_diff == find_nearest(y_double_diff,0))][0]
if options['log']:
aux.write_log(message=f"Edge shift estimated by the double differential zero-point is {str(round(edge_pos_double_diff,5))}", options=options)
aux.write_log(message=f"Edge position estimated by the double differential zero-point is {str(round(edge_pos_double_diff,5))} keV", options=options)
if options['diff']:
aux.write_log(message=f"Difference between edge position estimated from differential maximum and double differential zero-point is {(edge_pos_diff-edge_pos_double_diff)*1000} eV.")
if options['save_values']:
data['e0_double_diff'][filename] = edge_pos_double_diff
# Make and show / save plots
if options['save_plots'] or options['show_plots']:
# If both are enabled
if options['diff'] and options['double_diff']:
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(ncols=3, nrows=2, figsize=(20,20))
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax1, c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
df_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_diff-fit_region*1.5, edge_pos_diff+fit_region*1.5])
ax2.axvline(x=estimated_edge_pos-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos+fit_region, ls='--', c='black')
ax2.set_title('Fit region of differentiated data')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
ax3.axvline(x=edge_pos_diff, ls='--', c='green')
ax3.axvline(x=estimated_edge_pos, ls='--', c='red')
ax3.set_title('Fit of differentiated data')
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax4, c='black')
ax4.axvline(x=edge_pos_double_diff, ls='--', c='green')
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax5, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax5)
ax5.set_xlim([edge_pos_double_diff-0.0015, edge_pos_double_diff+0.0015])
ax5.axvline(x=estimated_edge_pos-fit_region, ls='--', c='black')
ax5.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax5.axvline(x=estimated_edge_pos+fit_region, ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax6, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax6)
ax6.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax6.axvline(x=estimated_edge_pos, ls='--', c='red')
# If only first order differentials is enabled
elif options['diff']:
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3,nrows=1, figsize=(20, 10))
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax1, c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
df_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_diff-fit_region*1.5, edge_pos_diff+fit_region*1.5])
ax2.axvline(x=edge_pos_diff-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=edge_pos_diff+fit_region, ls='--', c='black')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3)
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
ax3.axvline(x=edge_pos_diff, ls='--', c='green')
ax3.axvline(x=estimated_edge_pos, ls='--', c='red')
# If only second order differentials is enabled
elif options['double_diff']:
fig, (ax1, ax2, ax3) = plt.subplots(ncols=3,nrows=1, figsize=(20, 10))
data['xanes_data'].plot(x='ZapEnergy', y=filename, ax=ax1, c='black')
ax1.axvline(x=edge_pos_double_diff, ls='--', c='green')
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.set_xlim([edge_pos_double_diff-fit_region*1.5, edge_pos_double_diff+fit_region*1.5])
ax2.axvline(x=edge_pos_double_diff-fit_region, ls='--', c='black')
ax2.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax2.axvline(x=edge_pos_double_diff+fit_region, ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax3)
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
ax3.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax3.axvline(x=estimated_edge_pos, ls='--', c='red')
# Save plots if toggled
if options['save_plots']:
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if options['diff'] and options['double_diff']:
dst = os.path.join(options['save_folder'], os.path.basename(filename)) + '_edge_position.png'
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2, figsize=(20,20))
df_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax1)
ax1.set_xlim([edge_pos_diff-0.0015, edge_pos_diff+0.0015])
ax1.axvline(x=edge_pos_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_diff+options['fit_region'], ls='--', c='black')
ax1.set_title('Fit region of differentiated data')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2, kind='scatter')
df_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax2)
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
ax2.set_title('Fit of differentiated data')
plt.savefig(dst, transparent=False)
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax3, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax3)
ax3.set_xlim([edge_pos_double_diff-0.0015, edge_pos_double_diff+0.0015])
ax3.axvline(x=edge_pos_double_diff-options['fit_region'], ls='--', c='black')
ax3.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax3.axvline(x=edge_pos_double_diff+options['fit_region'], ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax4, kind='scatter')
df_double_diff_fit_function.plot(x='x_diff', y='y_diff', ax=ax4)
ax4.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax4.axvline(x=estimated_edge_pos, ls='--', c='red')
elif options['diff']:
fig, (ax1, ax2) = plt.subplots(ncols=2,nrows=1, figsize=(20, 10))
df_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
ax1.set_xlim([edge_pos_diff-0.5, edge_pos_diff+0.5])
ax1.axvline(x=edge_pos_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_diff+options['fit_region'], ls='--', c='black')
df_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2)
ax2.axvline(x=edge_pos_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
elif options['double_diff']:
fig, (ax1, ax2) = plt.subplots(ncols=2,nrows=1, figsize=(20, 10))
df_double_diff.plot(x='ZapEnergy', y=filename, ax=ax1, kind='scatter')
ax1.set_xlim([edge_pos_double_diff-0.5, edge_pos_double_diff+0.5])
ax1.axvline(x=edge_pos_double_diff-options['fit_region'], ls='--', c='black')
ax1.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax1.axvline(x=edge_pos_double_diff+options['fit_region'], ls='--', c='black')
df_double_diff_edge.plot(x='ZapEnergy', y=filename, ax=ax2)
ax2.axvline(x=edge_pos_double_diff, ls='--', c='green')
ax2.axvline(x=estimated_edge_pos, ls='--', c='red')
# Close plots if show_plots not toggled
if not options['show_plots']:
plt.close()
if not options['diff']:
@ -506,35 +769,59 @@ def determine_edge_position(data: dict, options={}):
return edge_pos_diff, edge_pos_double_diff
def determine_edge_position_interactive(data: dict, options: dict) -> None:
''' Defines the widgets to use with the ipywidgets interactive mode and calls the update function found in btp.ipywidgets. '''
step_size = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0]
w = widgets.interactive(
btp.ipywidgets_update, func=widgets.fixed(determine_edge_position), data=widgets.fixed(data), options=widgets.fixed(options),
points_around_edge=widgets.IntSlider(value=options['points_around_edge'], min=1, max=20, step=1),
)
options['widget'] = w
display(w)
def normalise(data: dict, options={}):
required_options = ['log', 'logfile', 'save_values']
required_options = ['log', 'logfile', 'normalisation_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_normalisation.log',
'save_values': True
'normalisation_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
normalised_df = pd.DataFrame(data['xanes_data']['ZapEnergy'])
data['normalisation_constants'] = {}
if options['normalisation_store_data']:
pre_edge_fit_data_norm = pd.DataFrame(data['pre_edge_fit_data']['ZapEnergy'])
post_edge_fit_data_norm = pd.DataFrame(data['post_edge_fit_data']['ZapEnergy'])
#Finding the normalisation constant µ_0(E_0), by subtracting the value of the pre-edge-line from the value of the post-edge line at e0
for filename in data['path']:
e0_ind = data['post_edge_fit_data'].loc[data['post_edge_fit_data']['ZapEnergy'] == find_nearest(data['post_edge_fit_data']['ZapEnergy'], data['e0'][filename])].index.values[0]
e0_ind = data['post_edge_fit_data'].loc[data['post_edge_fit_data']['ZapEnergy'] == find_nearest(data['post_edge_fit_data']['ZapEnergy'], data['e0_diff'][filename])].index.values[0]
#norm = data['post_edge_fit_data'][filename].iloc[find_nearest(data['post_edge_fit_data'][filename], data['e0'][filename])]
normalisation_constant = data['post_edge_fit_data'][filename].iloc[e0_ind] - data['pre_edge_fit_data'][filename].iloc[e0_ind]
normalised_df.insert(1, filename, data['xanes_data'][filename] / normalisation_constant)
if options['normalisation_store_data']:
pre_edge_fit_data_norm.insert(1, filename, data['pre_edge_fit_data'][filename] / normalisation_constant)
post_edge_fit_data_norm.insert(1, filename, data['post_edge_fit_data'][filename] / normalisation_constant)
if options['normalisation_store_data']:
data['xanes_data'] = normalised_df
# Normalise the pre-edge and post-edge fit function data
data['pre_edge_fit_data'][filename] = data['pre_edge_fit_data'][filename] / normalisation_constant
data['post_edge_fit_data'][filename] = data['post_edge_fit_data'][filename] / normalisation_constant
data['pre_edge_fit_data_norm'] = pre_edge_fit_data_norm
data['post_edge_fit_data_norm'] = post_edge_fit_data_norm
data['normalisation_constants'][filename] = normalisation_constant
if options['save_values']:
data['xanes_data'] = normalised_df
return normalised_df
@ -542,11 +829,11 @@ def normalise(data: dict, options={}):
def flatten(data:dict, options={}):
#only picking out zapenergy-values higher than edge position (edge pos and below remains untouched)
required_options = ['log', 'logfile', 'save_values']
required_options = ['log', 'logfile', 'flatten_store_data']
default_options = {
'log': False,
'logfile': f'{datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_flattening.log',
'save_values': True
'flatten_store_data': False,
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -554,13 +841,14 @@ def flatten(data:dict, options={}):
flattened_df = pd.DataFrame(data['xanes_data']['ZapEnergy'])
for filename in data['path']:
fit_function_diff = -data['post_edge_fit_data'][filename] + data['pre_edge_params'][filename][0]
fit_function_diff.loc[flattened_df['ZapEnergy'] <= data['e0'][filename]] = 0
fit_function_diff = data['post_edge_fit_data_norm'][filename] - 1
fit_function_diff.loc[flattened_df['ZapEnergy'] <= data['e0_diff'][filename]] = 0
flattened_df[filename] = data['xanes_data'][filename] - fit_function_diff
if options['save_values']:
if options['flatten_store_data']:
data['xanes_data'] = flattened_df

30
nafuma/xanes/edges.py Normal file
View file

@ -0,0 +1,30 @@
import pandas as pd
import numpy as np
from scipy.constants import c, h
# From 2019 redefinition of SI base units: https://en.wikipedia.org/wiki/2019_redefinition_of_the_SI_base_units
keV_per_J = (1 / 1.602176634e-19) / 1000
# kXu values taken from International Tables for Crystallography Volume , Kulwer Academic Publishers - Dordrect / Boston / London (1992)
K = { 'Z': [ 1, 2,
3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48],
'Atom': [ 'H', 'He',
'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',
'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar',
'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr',
'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd'],
'kXu': [ np.nan, np.nan,
226.5, np.nan, np.nan, 43.68, 30.99, 23.32, np.nan, np.nan,
np.nan, 9.5117, 7.9511, 6.7446, 5.7866, 5.0182, 4.3969, 3.8707,
3.43645, 3.07016, 2.7573, 2.49730, 2.26902, 2.07012, 1.89636, 1.74334, 1.60811, 1.48802, 1.38043, 1.2833, 1.19567, 1.11652, 1.04497, 0.97978, 0.91995, 0.86547,
0.81549, 0.76969, 0.72762, 0.68877, 0.65291, 0.61977, 0.5891, 0.56047, 0.53378, 0.50915, 0.48582, 0.46409]}
K = pd.DataFrame(K)
K['keV'] = np.round(h*c/(K['kXu']*10**-10) * keV_per_J, 3)
# FIXME If needed, add energies for L-edges as well.