Merge pull request #1 from rasmusvt/rasmus_multidiff

Integrating multiple diffractograms into master branch
This commit is contained in:
Rasmus Vester Thøgersen 2022-03-31 11:08:36 +02:00 committed by GitHub Enterprise
commit c637bdce6a
4 changed files with 276 additions and 94 deletions

View file

@ -0,0 +1,2 @@
- Must allow for automatic normalisation between different diffractograms, must only happen upon reading data
-

View file

@ -313,6 +313,17 @@ def update_widgets(options):
if widget['state'] != options['x_vals']:
for arg in widget[f'{options["x_vals"]}_default']:
# If new min value is larger than previous max, or new max value is smaller than previous min, set the opposite first
if arg == 'min':
if widget[f'{options["x_vals"]}_default']['min'] > getattr(widget['w'], 'max'):
setattr(widget['w'], 'max', widget[f'{options["x_vals"]}_default']['max'])
elif arg == 'max':
if widget[f'{options["x_vals"]}_default']['max'] < getattr(widget['w'], 'min'):
setattr(widget['w'], 'min', widget[f'{options["x_vals"]}_default']['min'])
setattr(widget['w'], arg, widget[f'{options["x_vals"]}_default'][arg])
widget['state'] = options['x_vals']
@ -366,16 +377,20 @@ def update_rc_params(rc_params):
plt.rcParams.update({key: rc_params[key]})
def generate_colours(palettes):
def generate_colours(palettes, kind=None):
# Creates a list of all the colours that is passed in the colour_cycles argument. Then makes cyclic iterables of these.
colour_collection = []
for palette in palettes:
mod = importlib.import_module("palettable.colorbrewer.%s" % palette[0])
colour = getattr(mod, palette[1]).mpl_colors
colour_collection = colour_collection + colour
if kind == 'single':
colour_cycle = itertools.cycle(palettes)
colour_cycle = itertools.cycle(colour_collection)
else:
# Creates a list of all the colours that is passed in the colour_cycles argument. Then makes cyclic iterables of these.
colour_collection = []
for palette in palettes:
mod = importlib.import_module("palettable.colorbrewer.%s" % palette[0])
colour = getattr(mod, palette[1]).mpl_colors
colour_collection = colour_collection + colour
colour_cycle = itertools.cycle(colour_collection)
return colour_cycle

View file

@ -27,7 +27,7 @@ def get_image_headers(path):
return image.header
def integrate_1d(data, options={}):
def integrate_1d(data, options={}, index=0):
''' Integrates an image file to a 1D diffractogram.
Required content of data:
@ -40,10 +40,12 @@ def integrate_1d(data, options={}):
df: DataFrame contianing 1D diffractogram if option 'return' is True
'''
required_options = ['unit', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite']
required_options = ['unit', 'nbins', 'save', 'save_filename', 'save_extension', 'save_folder', 'overwrite']
default_options = {
'unit': '2th_deg',
'nbins': 3000,
'extract_folder': 'tmp',
'save': False,
'save_filename': None,
'save_extension': '_integrated.xy',
@ -51,51 +53,57 @@ def integrate_1d(data, options={}):
'overwrite': False}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not isinstance(data['path'], list):
data['path'] = [data['path']]
# Get image array from filename if not passed
if 'image' not in data.keys():
data['image'] = get_image_array(data['path'])
data['image'] = get_image_array(data['path'][index])
# Instanciate the azimuthal integrator from pyFAI from the calibrant (.poni-file)
ai = pyFAI.load(data['calibrant'])
# Determine filename
filename = make_filename(data=data, options=options)
filename = make_filename(options=options, path=data['path'][index])
# Make save_folder if this does not exist already
if not os.path.isdir(options['save_folder']):
os.makedirs(options['save_folder'])
if not os.path.isdir(options['extract_folder']):
os.makedirs(options['extract_folder'])
res = ai.integrate1d(data['image'], data['nbins'], unit=options['unit'], filename=filename)
res = ai.integrate1d(data['image'], options['nbins'], unit=options['unit'], filename=filename)
data['path'] = filename
diffractogram = read_xy(data=data, options=options)
data['path'][index] = filename
diffractogram, wavelength = read_xy(data=data, options=options, index=index)
if not options['save']:
os.remove(filename)
shutil.rmtree('tmp')
shutil.rmtree(f'tmp')
# Reset this option
options['save_folder'] = None
return diffractogram
return diffractogram, wavelength
def make_filename(data, options):
def make_filename(options, path=None):
# Define save location for integrated diffractogram data
if not options['save']:
options['save_folder'] = 'tmp'
filename = os.path.join(options['save_folder'], 'tmp_diff.dat')
filename = os.path.join(options['extract_folder'], 'tmp_diff.dat')
elif options['save']:
# Case 1: No filename is given.
if not options['save_filename']:
# If a path is given instead of an image array, the path is taken as the trunk of the savename
if data['path']:
if path:
# Make filename by joining the save_folder, the filename (with extension deleted) and adding the save_extension
filename = os.path.join(options['save_folder'], os.path.split(data['path'])[-1].split('.')[0] + options['save_extension'])
filename = os.path.join(options['save_folder'], os.path.split(path)[-1].split('.')[0] + options['save_extension'])
else:
# Make filename just "integrated.dat" in the save_folder
filename = os.path.join(options['save_folder'], 'integrated.xy')
@ -176,7 +184,10 @@ def view_integrator(calibrant):
def read_brml(data, options={}):
def read_brml(data, options={}, index=0):
# FIXME: Can't read RECX1-data, apparently must be formatted differently from RECX2. Check the RawData-files and compare between the two files.
required_options = ['extract_folder', 'save_folder']
@ -194,7 +205,7 @@ def read_brml(data, options={}):
# Extract the RawData0.xml file from the brml-file
with zipfile.ZipFile(data['path'], 'r') as brml:
with zipfile.ZipFile(data['path'][index], 'r') as brml:
for info in brml.infolist():
if "RawData" in info.filename:
brml.extract(info.filename, options['extract_folder'])
@ -213,31 +224,66 @@ def read_brml(data, options={}):
for chain in root.findall('./DataRoutes/DataRoute'):
for scantype in chain.findall('ScanInformation/ScanMode'):
if scantype.text == 'StillScan':
if chain.get('Description') == 'Originally measured data.':
for scandata in chain.findall('Datum'):
# Get the scan type to be able to handle different data formats
scantype = chain.findall('ScanInformation')[0].get('VisibleName')
# Check if the chain is the right one to extract the data from
if chain.get('Description') == 'Originally measured data.':
if scantype == 'TwoTheta':
for scandata in chain.findall('Datum'):
scandata = scandata.text.split(',')
twotheta, intensity = float(scandata[2]), float(scandata[3])
if twotheta > 0:
diffractogram.append({'2th': twotheta, 'I': intensity})
elif scantype == 'Coupled TwoTheta/Theta':
for scandata in chain.findall('Datum'):
scandata = scandata.text.split(',')
twotheta, intensity = float(scandata[2]), float(scandata[4])
if twotheta > 0:
diffractogram.append({'2th': twotheta, 'I': intensity})
elif scantype == 'Still (Eiger2R_500K (1D mode))':
start = float(chain.findall('ScanInformation/ScaleAxes/ScaleAxisInfo/Start')[0].text)
stop = float(chain.findall('ScanInformation/ScaleAxes/ScaleAxisInfo/Stop')[0].text)
for scandata in chain.findall('Datum'):
scandata = scandata.text.split(',')
scandata = [float(i) for i in scandata]
twotheta, intensity = float(scandata[2]), float(scandata[3])
raw = [float(i) for i in scandata]
else:
if chain.get('Description') == 'Originally measured data.':
for scandata in chain.findall('Datum'):
scandata = scandata.text.split(',')
twotheta, intensity = float(scandata[2]), float(scandata[3])
if twotheta > 0:
diffractogram.append({'2th': twotheta, 'I': intensity})
intensity = []
for r in raw:
if r > 601:
intensity.append(r)
intensity = np.array(intensity)
twotheta = np.linspace(start, stop, len(intensity))
diffractogram = {'2th': twotheta, 'I': intensity}
if 'wavelength' not in data.keys():
for chain in root.findall('./FixedInformation/Instrument/PrimaryTracks/TrackInfoData/MountedOptics/InfoData/Tube/WaveLengthAlpha1'):
data['wavelength'] = float(chain.attrib['Value'])
#if 'wavelength' not in data.keys():
# Find wavelength
for chain in root.findall('./FixedInformation/Instrument/PrimaryTracks/TrackInfoData/MountedOptics/InfoData/Tube/WaveLengthAlpha1'):
wavelength = float(chain.attrib['Value'])
diffractogram = pd.DataFrame(diffractogram)
@ -249,15 +295,16 @@ def read_brml(data, options={}):
return diffractogram
return diffractogram, wavelength
def read_xy(data, options={}):
def read_xy(data, options={}, index=0):
if 'wavelength' not in data.keys():
find_wavelength_from_xy(data=data)
#if 'wavelength' not in data.keys():
# Get wavelength from scan
wavelength = find_wavelength_from_xy(path=data['path'][index])
with open(data['path'], 'r') as f:
with open(data['path'][index], 'r') as f:
position = 0
current_line = f.readline()
@ -276,37 +323,70 @@ def read_xy(data, options={}):
diffractogram.columns = ['2th', 'I', 'sigma']
return diffractogram
return diffractogram, wavelength
def read_data(data, options={}):
def read_data(data, options={}, index=0):
beamline_extensions = ['mar3450', 'edf', 'cbf']
file_extension = data['path'].split('.')[-1]
file_extension = data['path'][index].split('.')[-1]
if file_extension in beamline_extensions:
diffractogram = integrate_1d(data=data, options=options)
diffractogram, wavelength = integrate_1d(data=data, options=options, index=index)
elif file_extension == 'brml':
diffractogram = read_brml(data=data, options=options)
diffractogram, wavelength = read_brml(data=data, options=options, index=index)
elif file_extension in['xy', 'xye']:
diffractogram = read_xy(data=data, options=options)
diffractogram, wavelength = read_xy(data=data, options=options, index=index)
diffractogram = translate_wavelengths(data=diffractogram, wavelength=data['wavelength'])
if options['normalise']:
diffractogram['I'] = diffractogram['I'] / diffractogram['I'].max()
if options['offset']:
diffractogram = apply_offset(diffractogram, wavelength, index, options)
diffractogram = translate_wavelengths(data=diffractogram, wavelength=wavelength)
return diffractogram, wavelength
def apply_offset(diffractogram, wavelength, index, options):
#Apply offset along y-axis
diffractogram['I_org'] = diffractogram['I'] # make copy of original intensities
diffractogram['I'] = diffractogram['I'] + index*options['offset_y']
# Apply offset along x-axis
relative_shift = (wavelength / 1.54059)*options['offset_x'] # Adjusts the offset-factor to account for wavelength, so that offset_x given is given in 2th_cuka-units
diffractogram['2th_org'] = diffractogram['2th']
diffractogram['2th'] = diffractogram['2th'] + index*relative_shift
return diffractogram
def revert_offset(diffractogram,which=None):
if which == 'both':
diffractogram['2th'] = diffractogram['2th_org']
diffractogram['I'] = diffractogram['I_org']
if which == 'y':
diffractogram['I'] = diffractogram['I_org']
if which == 'x':
diffractogram['2th'] = diffractogram['2th_org']
return diffractogram
def load_reflection_table(data, options={}):
required_options = ['wavelength', 'to_wavelength']
required_options = ['ref_wavelength', 'to_wavelength']
default_options = {
'wavelength': 1.54059,
'ref_wavelength': 1.54059,
'to_wavelength': None
}
@ -333,7 +413,7 @@ def load_reflection_table(data, options={}):
# Set the new modified headers as the headers of
reflections.columns = headers
reflections = translate_wavelengths(data=reflections, wavelength=options['wavelength'], to_wavelength=options['to_wavelength'])
reflections = translate_wavelengths(data=reflections, wavelength=options['ref_wavelength'], to_wavelength=options['to_wavelength'])
#print(reflections)
@ -342,6 +422,8 @@ def load_reflection_table(data, options={}):
def translate_wavelengths(data, wavelength, to_wavelength=None):
# FIXME Somewhere here there is an invalid arcsin-argument. Not sure where.
pd.options.mode.chained_assignment = None
# Translate to CuKalpha
@ -378,8 +460,7 @@ def translate_wavelengths(data, wavelength, to_wavelength=None):
if to_wavelength:
if to_wavelength > cuka:
if to_wavelength >= cuka:
max_2th = 2*np.arcsin(cuka/to_wavelength) * 180/np.pi
else:
max_2th = data['2th_cuka'].max()
@ -395,19 +476,24 @@ def translate_wavelengths(data, wavelength, to_wavelength=None):
def find_wavelength_from_xy(data):
def find_wavelength_from_xy(path):
wavelength_dict = {'Cu': 1.54059, 'Mo': 0.71073}
with open(data['path'], 'r') as f:
with open(path, 'r') as f:
lines = f.readlines()
for line in lines:
# For .xy-files output from EVA
if 'Anode' in line:
anode = line.split()[8].strip('"')
data['wavelength'] = wavelength_dict[anode]
wavelength = wavelength_dict[anode]
# For .xy-files output from pyFAI integration
elif 'Wavelength' in line:
data['wavelength'] = float(line.split()[2])*10**10
wavelength = float(line.split()[2])*10**10
return wavelength

View file

@ -19,8 +19,8 @@ def plot_diffractogram(data, options={}):
data (dict): Must include path = string to diffractogram data, and plot_kind = (recx, beamline, image)'''
# Update options
required_options = ['x_vals', 'y_vals', 'ylabel', 'xlabel', 'xunit', 'yunit', 'line', 'scatter', 'xlim', 'ylim',
'reflections_plot', 'reflections_indices', 'reflections_data', 'plot_kind', 'palettes', 'interactive', 'rc_params', 'format_params']
required_options = ['x_vals', 'y_vals', 'ylabel', 'xlabel', 'xunit', 'yunit', 'line', 'scatter', 'xlim', 'ylim', 'normalise', 'offset', 'offset_x', 'offset_y',
'reflections_plot', 'reflections_indices', 'reflections_data', 'plot_kind', 'palettes', 'interactive', 'rc_params', 'format_params', 'interactive_session_active']
default_options = {
'x_vals': '2th',
@ -28,6 +28,10 @@ def plot_diffractogram(data, options={}):
'ylabel': 'Intensity', 'xlabel': '2theta',
'xunit': 'deg', 'yunit': 'a.u.',
'xlim': None, 'ylim': None,
'normalise': True,
'offset': True,
'offset_x': 0,
'offset_y': 1,
'line': True, # whether or not to plot diffractogram as a line plot
'scatter': False, # whether or not to plot individual data points
'reflections_plot': False, # whether to plot reflections as a plot
@ -41,21 +45,43 @@ def plot_diffractogram(data, options={}):
'format_params': {},
}
if 'offset_y' not in options.keys():
if len(data['path']) > 10:
default_options['offset_y'] = 0.05
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
# Convert data['path'] to list to allow iteration over this to accommodate both single and multiple diffractograms
if not isinstance(data['path'], list):
data['path'] = [data['path']]
# Check if there is some data stored already, load in data if not. This speeds up replotting in interactive mode.
if not 'diffractogram' in data.keys():
diffractogram = xrd.io.read_data(data=data, options=options)
data['diffractogram'] = diffractogram
# Initialise empty list for diffractograms and wavelengths
data['diffractogram'] = [None for _ in range(len(data['path']))]
data['wavelength'] = [None for _ in range(len(data['path']))]
for index in range(len(data['path'])):
diffractogram, wavelength = xrd.io.read_data(data=data, options=options, index=index)
data['diffractogram'][index] = diffractogram
data['wavelength'][index] = wavelength
else:
diffractogram = data['diffractogram']
if not isinstance(data['diffractogram'], list):
data['diffractogram'] = [data['diffractogram']]
data['wavelength'] = [data['wavelength']]
# Sets the xlim if this has not bee specified
if not options['xlim']:
options['xlim'] = [diffractogram[options['x_vals']].min(), diffractogram[options['x_vals']].max()]
# Start inteactive session with ipywidgets
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
@ -74,7 +100,6 @@ def plot_diffractogram(data, options={}):
# Prepare plot, and read and process data
fig, ax = btp.prepare_plot(options=options)
@ -92,14 +117,18 @@ def plot_diffractogram(data, options={}):
ax = ax[-1]
colours = btp.generate_colours(options['palettes'])
if len(data['path']) < 10:
colours = btp.generate_colours(options['palettes'])
else:
colours = btp.generate_colours(['black'], kind='single')
if options['line']:
diffractogram.plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=next(colours), zorder=1)
for diffractogram in data['diffractogram']:
if options['line']:
diffractogram.plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=next(colours), zorder=1)
if options['scatter']:
ax.scatter(x=diffractogram[options['x_vals']], y = diffractogram[options['y_vals']], c=[(1,1,1,0)], edgecolors=[next(colours)], linewidths=plt.rcParams['lines.markeredgewidth'], zorder=2) #, edgecolors=np.array([next(colours)]))
if options['scatter']:
ax.scatter(x=diffractogram[options['x_vals']], y = diffractogram[options['y_vals']], c=[(1,1,1,0)], edgecolors=[next(colours)], linewidths=plt.rcParams['lines.markeredgewidth'], zorder=2) #, edgecolors=np.array([next(colours)]))
@ -107,18 +136,18 @@ def plot_diffractogram(data, options={}):
# Make the reflection plots
# Make the reflection plots. By default, the wavelength of the first diffractogram will be used for these.
if options['reflections_plot'] and options['reflections_data']:
options['xlim'] = ax.get_xlim()
options['to_wavelength'] = data['wavelength']
options['to_wavelength'] = data['wavelength'][0]
for reference, axis in zip(options['reflections_data'], ref_axes):
plot_reflection_table(data=reference, ax=axis, options=options)
# Print the reflection indices
# Print the reflection indices. By default, the wavelength of the first diffractogram will be used for this.
if options['reflections_indices'] and options['reflections_data']:
options['xlim'] = ax.get_xlim()
options['to_wavelength'] = data['wavelength']
options['to_wavelength'] = data['wavelength'][0]
for reference in options['reflections_data']:
plot_reflection_indices(data=reference, ax=indices_ax, options=options)
@ -127,6 +156,8 @@ def plot_diffractogram(data, options={}):
if options['interactive_session_active']:
btp.update_widgets(options=options)
xrd.io.up
return diffractogram, fig, ax
@ -149,18 +180,40 @@ def determine_grid_layout(options):
def plot_diffractogram_interactive(data, options):
minmax = {'2th': [None, None], '2th_cuka': [None, None], '2th_moka': [None, None], 'd': [None, None], '1/d': [None, None], 'q': [None, None], 'q2': [None, None], 'q4': [None, None]}
update_minmax(minmax, data)
ymin, ymax = None, None
for index, diffractogram in enumerate(data['diffractogram']):
if not ymin or (ymin > (diffractogram['I'].min())): #+index*options['offset_y'])):
ymin = diffractogram['I'].min()#+index*options['offset_y']
if not ymax or (ymax < (diffractogram['I'].max())):#+index*options['offset_y'])):
ymax = diffractogram['I'].max()#+index*options['offset_y']
ymin_start = ymin - 0.1*ymax
ymax_start = ymax+0.2*ymax
ymin = ymin - 5*ymax
ymax = ymax*5
options['widgets'] = {
'xlim': {
'w': widgets.FloatRangeSlider(value=[data['diffractogram']['2th'].min(), data['diffractogram']['2th'].max()], min=data['diffractogram']['2th'].min(), max=data['diffractogram']['2th'].max(), step=0.5, layout=widgets.Layout(width='95%')),
'2th_default': {'min': data['diffractogram']['2th'].min(), 'max': data['diffractogram']['2th'].max(), 'value': [data['diffractogram']['2th'].min(), data['diffractogram']['2th'].max()], 'step': 0.5},
'2th_cuka_default': {'min': data['diffractogram']['2th_cuka'].min(), 'max': data['diffractogram']['2th_cuka'].max(), 'value': [data['diffractogram']['2th_cuka'].min(), data['diffractogram']['2th_cuka'].max()], 'step': 0.5},
'2th_moka_default': {'min': data['diffractogram']['2th_moka'].min(), 'max': data['diffractogram']['2th_moka'].max(), 'value': [data['diffractogram']['2th_moka'].min(), data['diffractogram']['2th_moka'].max()], 'step': 0.5},
'd_default': {'min': data['diffractogram']['d'].min(), 'max': data['diffractogram']['d'].max(), 'value': [data['diffractogram']['d'].min(), data['diffractogram']['d'].max()], 'step': 0.5},
'1/d_default': {'min': data['diffractogram']['1/d'].min(), 'max': data['diffractogram']['1/d'].max(), 'value': [data['diffractogram']['1/d'].min(), data['diffractogram']['1/d'].max()], 'step': 0.5},
'q_default': {'min': data['diffractogram']['q'].min(), 'max': data['diffractogram']['q'].max(), 'value': [data['diffractogram']['q'].min(), data['diffractogram']['q'].max()], 'step': 0.5},
'q2_default': {'min': data['diffractogram']['q2'].min(), 'max': data['diffractogram']['q2'].max(), 'value': [data['diffractogram']['q2'].min(), data['diffractogram']['q2'].max()], 'step': 0.5},
'q4_default': {'min': data['diffractogram']['q4'].min(), 'max': data['diffractogram']['q4'].max(), 'value': [data['diffractogram']['q4'].min(), data['diffractogram']['q4'].max()], 'step': 0.5},
'state': '2th'
'w': widgets.FloatRangeSlider(value=[minmax['2th'][0], minmax['2th'][1]], min=minmax['2th'][0], max=minmax['2th'][1], step=0.5, layout=widgets.Layout(width='95%')),
'state': '2th',
'2th_default': {'min': minmax['2th'][0], 'max': minmax['2th'][1], 'value': [minmax['2th'][0], minmax['2th'][1]], 'step': 0.5},
'2th_cuka_default': {'min': minmax['2th_cuka'][0], 'max': minmax['2th_cuka'][1], 'value': [minmax['2th_cuka'][0], minmax['2th_cuka'][1]], 'step': 0.5},
'2th_moka_default': {'min': minmax['2th_moka'][0], 'max': minmax['2th_moka'][1], 'value': [minmax['2th_moka'][0], minmax['2th_moka'][1]], 'step': 0.5},
'd_default': {'min': minmax['d'][0], 'max': minmax['d'][1], 'value': [minmax['d'][0], minmax['d'][1]], 'step': 0.5},
'1/d_default': {'min': minmax['1/d'][0], 'max': minmax['1/d'][1], 'value': [minmax['1/d'][0], minmax['1/d'][1]], 'step': 0.5},
'q_default': {'min': minmax['q'][0], 'max': minmax['q'][1], 'value': [minmax['q'][0], minmax['q'][1]], 'step': 0.5},
'q2_default': {'min': minmax['q2'][0], 'max': minmax['q2'][1], 'value': [minmax['q2'][0], minmax['q2'][1]], 'step': 0.5},
'q4_default': {'min': minmax['q4'][0], 'max': minmax['q4'][1], 'value': [minmax['q4'][0], minmax['q4'][1]], 'step': 0.5}
}
}
@ -172,7 +225,10 @@ def plot_diffractogram_interactive(data, options):
reflections_plot=widgets.ToggleButton(value=True),
reflections_indices=widgets.ToggleButton(value=False),
x_vals=widgets.Dropdown(options=['2th', 'd', '1/d', 'q', 'q2', 'q4', '2th_cuka', '2th_moka'], value='2th', description='X-values'),
xlim=options['widgets']['xlim']['w'])
xlim=options['widgets']['xlim']['w'],
ylim=widgets.FloatRangeSlider(value=[ymin_start, ymax_start], min=ymin, max=ymax, step=0.5, layout=widgets.Layout(width='95%')),
offset_y=widgets.FloatSlider(value=options['offset_y'], min=-5, max=5)
)
else:
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_diffractogram), data=widgets.fixed(data), options=widgets.fixed(options),
@ -184,6 +240,29 @@ def plot_diffractogram_interactive(data, options):
display(w)
def update_minmax(minmax, data):
''' Finds minimum and maximum values of each column and updates the minmax dictionary to contain the correct values.
Input:
minmax (dict): contains '''
for index, diffractogram in enumerate(data['diffractogram']):
if not minmax['2th'][0] or diffractogram['2th'].min() < minmax['2th'][0]:
minmax['2th'][0] = diffractogram['2th'].min()
min_index = index
if not minmax['2th'][1] or diffractogram['2th'].max() > minmax['2th'][1]:
minmax['2th'][1] = diffractogram['2th'].max()
max_index = index
minmax['2th_cuka'][0], minmax['2th_cuka'][1] = data['diffractogram'][min_index]['2th_cuka'].min(), data['diffractogram'][max_index]['2th_cuka'].max()
minmax['2th_moka'][0], minmax['2th_moka'][1] = data['diffractogram'][min_index]['2th_moka'].min(), data['diffractogram'][max_index]['2th_moka'].max()
minmax['d'][0], minmax['d'][1] = data['diffractogram'][max_index]['d'].min(), data['diffractogram'][min_index]['d'].max() # swapped, intended
minmax['1/d'][0], minmax['1/d'][1] = data['diffractogram'][min_index]['1/d'].min(), data['diffractogram'][max_index]['1/d'].max()
minmax['q'][0], minmax['q'][1] = data['diffractogram'][min_index]['q'].min(), data['diffractogram'][max_index]['q'].max()
minmax['q2'][0], minmax['q2'][1] = data['diffractogram'][min_index]['q2'].min(), data['diffractogram'][max_index]['q2'].max()
minmax['q4'][0], minmax['q4'][1] = data['diffractogram'][min_index]['q4'].min(), data['diffractogram'][max_index]['q4'].max()
def update_widgets(options):
for widget in options['widgets'].values():