Add XRD functionality
This commit is contained in:
parent
0e3e0e8a4f
commit
fa9f641c3f
1 changed files with 94 additions and 5 deletions
|
|
@ -1,4 +1,5 @@
|
||||||
import fabio, pyFAI
|
import fabio, pyFAI
|
||||||
|
import pandas as pd
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
@ -11,11 +12,29 @@ def get_image_array(path):
|
||||||
return image_array
|
return image_array
|
||||||
|
|
||||||
|
|
||||||
def integrate_1d(path, calibrant, bins, options):
|
def integrate_1d(calibrant, bins, path=None, image=None, options=None):
|
||||||
|
''' Integrates an image file to a 1D diffractogram.
|
||||||
|
|
||||||
required_options = ['unit', 'extension']
|
Input:
|
||||||
|
calibrant: path to .poni-file
|
||||||
|
bins: Number of bins to divide image into
|
||||||
|
path (optional): path to image file - either this or image must be specified. If both is passed, image is prioritsed
|
||||||
|
image (optional): image array (Numpy) as extracted from get_image_array
|
||||||
|
options (optional): dictionary of options
|
||||||
|
|
||||||
default_options = {'unit': '2th_deg', 'extension': '_integrated.dat'}
|
Output:
|
||||||
|
df: DataFrame contianing 1D diffractogram if option 'return' is True
|
||||||
|
'''
|
||||||
|
|
||||||
|
required_options = ['unit', 'extension', 'filename', 'save_folder', 'overwrite', 'return']
|
||||||
|
|
||||||
|
default_options = {
|
||||||
|
'unit': '2th_deg',
|
||||||
|
'extension': '_integrated.dat',
|
||||||
|
'filename': None,
|
||||||
|
'save_folder': '.',
|
||||||
|
'overwrite': False,
|
||||||
|
'return': False}
|
||||||
|
|
||||||
if not options:
|
if not options:
|
||||||
options = default_options
|
options = default_options
|
||||||
|
|
@ -26,15 +45,85 @@ def integrate_1d(path, calibrant, bins, options):
|
||||||
options[option] = default_options[option]
|
options[option] = default_options[option]
|
||||||
|
|
||||||
|
|
||||||
image = get_image_array(path)
|
if not image:
|
||||||
|
image = get_image_array(path)
|
||||||
|
|
||||||
ai = pyFAI.load(calibrant)
|
ai = pyFAI.load(calibrant)
|
||||||
|
|
||||||
filename = os.path.split(path)[-1].split('.')[0] + options['extension']
|
|
||||||
|
if not options['filename']:
|
||||||
|
if path:
|
||||||
|
filename = os.path.join(options['save_folder'], os.path.split(path)[-1].split('.')[0] + options['extension'])
|
||||||
|
else:
|
||||||
|
filename = os.path.join(options['save_folder'], 'integrated.dat')
|
||||||
|
|
||||||
|
|
||||||
|
if not options['overwrite']:
|
||||||
|
trunk = os.path.join(options['save_folder'], filename.split('\\')[-1].split('.')[0])
|
||||||
|
extension = filename.split('.')[-1]
|
||||||
|
counter = 0
|
||||||
|
|
||||||
|
while os.path.isfile(filename):
|
||||||
|
counter_string = str(counter)
|
||||||
|
filename = trunk + '_' + counter_string.zfill(4) + '.' + extension
|
||||||
|
counter += 1
|
||||||
|
|
||||||
|
|
||||||
|
if not os.path.isdir(options['save_folder']):
|
||||||
|
os.makedirs(options['save_folder'])
|
||||||
|
|
||||||
|
|
||||||
res = ai.integrate1d(image, bins, unit=options['unit'], filename=filename)
|
res = ai.integrate1d(image, bins, unit=options['unit'], filename=filename)
|
||||||
|
|
||||||
|
if options['return']:
|
||||||
|
return open_1d_data(filename)
|
||||||
|
|
||||||
|
|
||||||
|
def open_1d_data(path, options=None):
|
||||||
|
|
||||||
|
with open(path, 'r') as f:
|
||||||
|
position = 0
|
||||||
|
|
||||||
|
current_line = f.readline()
|
||||||
|
|
||||||
|
while current_line[0] == '#':
|
||||||
|
position = f.tell()
|
||||||
|
current_line = f.readline()
|
||||||
|
|
||||||
|
f.seek(position)
|
||||||
|
|
||||||
|
df = pd.read_csv(f, header=None, delim_whitespace=True)
|
||||||
|
|
||||||
|
df.columns = ['2th', 'I']
|
||||||
|
|
||||||
|
|
||||||
|
return df
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def average_images(images):
|
||||||
|
''' Takes a list of path to image files, reads them and averages them before returning the average image'''
|
||||||
|
|
||||||
|
|
||||||
|
image_arrays = []
|
||||||
|
|
||||||
|
for image in images:
|
||||||
|
image_array = xrd.io.get_image_array(os.path.join(root, image))
|
||||||
|
image_arrays.append(image_array)
|
||||||
|
|
||||||
|
|
||||||
|
image_arrays = np.array(image_arrays)
|
||||||
|
|
||||||
|
image_average = image_arrays.mean(axis=0)
|
||||||
|
|
||||||
|
|
||||||
|
return image_average
|
||||||
|
|
||||||
|
|
||||||
|
def subtract_dark(image, dark):
|
||||||
|
|
||||||
|
return image - dark
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def view_integrator(calibrant):
|
def view_integrator(calibrant):
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue