Merge branch 'master' of github.com:rasmusthog/nafuma

This commit is contained in:
halvorhv 2022-10-14 10:21:32 +02:00
commit fb524e64d1
4 changed files with 116 additions and 31 deletions

View file

@ -894,9 +894,10 @@ def get_equilibrium_data(path, atoms_per_formula_unit, eos=None):
atoms, atom_num, atoms_dict = get_atoms(os.path.join(dir, 'POSCAR')) atoms, atom_num, atoms_dict = get_atoms(os.path.join(dir, 'POSCAR'))
scaling_factor = sum(atom_num) / atoms_per_formula_unit scaling_factor = sum(atom_num) / atoms_per_formula_unit
label = dir.split('/')[-1] label = os.path.basename(dir)
dft_df = pd.read_csv(os.path.join(dir, 'energ.dat'), header=None, delim_whitespace=True) dft_df = pd.read_csv(os.path.join(dir, 'energ.dat'), header=None, delim_whitespace=True, index_col=0)
dft_df.reset_index(drop=True, inplace=True)
dft_df.columns = ['Volume', 'Energy'] dft_df.columns = ['Volume', 'Energy']
volume = dft_df["Volume"].to_numpy() / scaling_factor volume = dft_df["Volume"].to_numpy() / scaling_factor
@ -904,10 +905,15 @@ def get_equilibrium_data(path, atoms_per_formula_unit, eos=None):
p0 = get_initial_guesses(volume, energy) p0 = get_initial_guesses(volume, energy)
equilibrium_constants = fit_eos_curve(volume, energy, p0, eos) try:
e0, v0, b0, bp = equilibrium_constants[0], equilibrium_constants[1], equilibrium_constants[2], equilibrium_constants[3] equilibrium_constants = fit_eos_curve(volume, energy, p0, eos)
data.append([label, e0, v0, b0/kJ*1e24, bp]) e0, v0, b0, bp = equilibrium_constants[0], equilibrium_constants[1], equilibrium_constants[2], equilibrium_constants[3]
data.append([label, e0, v0, b0/kJ*1e24, bp])
except:
data.append([label, None, None, None, None])
df = pd.DataFrame(data) df = pd.DataFrame(data)

View file

@ -305,7 +305,7 @@ def adjust_plot(fig, ax, options):
# Plot all passed texts # Plot all passed texts
for text in options['text']: for text in options['text']:
plt.text(x=text[1][0], y=text[1][1], s=text[0]) ax.text(x=text[1][0], y=text[1][1], s=text[0])
return fig, ax return fig, ax

View file

@ -5,10 +5,15 @@ import nafuma.auxillary as aux
def read_data(path, options={}): def read_data(path, options={}):
default_options = {
'split': False,
}
options = aux.update_options(options=options, default_options=default_options)
index = find_start(path) index = find_start(path)
df = pd.read_csv(path, skiprows=index+1) df = pd.read_csv(path, skiprows=index+1)
mask = df.loc[df['Comment'].notna()]
df = df[['Comment', 'Time Stamp (sec)', 'Temperature (K)', 'Magnetic Field (Oe)', df = df[['Comment', 'Time Stamp (sec)', 'Temperature (K)', 'Magnetic Field (Oe)',
'DC Moment (emu)', 'DC Std. Err. (emu)', 'DC Quad. Moment (emu)', 'DC Moment (emu)', 'DC Std. Err. (emu)', 'DC Quad. Moment (emu)',
@ -19,7 +24,8 @@ def read_data(path, options={}):
'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment', 'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment',
'Status', 'Max_Field', 'Pressure', 'Temperature_Status'] 'Status', 'Max_Field', 'Pressure', 'Temperature_Status']
df.columns = new_columns df.columns = new_columns
df[['Temperature', 'Magnetic_Field', 'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment', 'Max_Field', 'Pressure']] = df[['Temperature', 'Magnetic_Field', 'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment', 'Max_Field', 'Pressure']].astype(float) df[['Temperature', 'Magnetic_Field', 'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment', 'Max_Field', 'Pressure']] = df[['Temperature', 'Magnetic_Field', 'DC_Moment', 'DC_Std_Err', 'DC_Quad_Moment', 'Max_Field', 'Pressure']].astype(float)
@ -30,12 +36,15 @@ def read_data(path, options={}):
df = calculate_bohr_magnetons(df, options) df = calculate_bohr_magnetons(df, options)
df = calculate_chi_inverse(df, options) df = calculate_chi_inverse(df, options)
if options['split']:
mask = df.loc[df['Comment'].notna()]
dfs = []
for i in range(1,len(mask.index)):
dfs.append(df.iloc[mask.index[i-1]:mask.index[i]])
dfs = [] return dfs
for i in range(1,len(mask.index)):
dfs.append(df.iloc[mask.index[i-1]:mask.index[i]])
return dfs return df
def read_hysteresis(path): def read_hysteresis(path):

View file

@ -441,7 +441,8 @@ def generate_heatmap(data, options={}):
xticks[xval] = xticks_xval xticks[xval] = xticks_xval
options['x_tick_locators'] = None # FIXME COMMENTED OUT THIS LINE TO FIX SOMETHING - NOT SURE WHAT UNINTENDED CONSEQUENCES THAT MAY HAVE....
#options['x_tick_locators'] = None
heatmap = heatmap.reset_index().pivot_table(index='scan', columns='2th', values='I') heatmap = heatmap.reset_index().pivot_table(index='scan', columns='2th', values='I')
@ -826,7 +827,8 @@ def plot_reflection_table(data, reflections_params, ax=None, options={}):
'wavelength': 1.54059, # CuKalpha, [Å] 'wavelength': 1.54059, # CuKalpha, [Å]
'format_params': {}, 'format_params': {},
'rc_params': {}, 'rc_params': {},
'label': None 'label': None,
'heatmap': False
} }
@ -975,6 +977,16 @@ def plot_refinement(data, options={}):
'r_wp': True, 'r_wp': True,
'r_exp': False, 'r_exp': False,
'wp': False, 'wp': False,
'wavelength': None,
'xlabel': '2$\\theta$', 'xunit': '$^{\circ}$',
'ylabel': 'Intensity', 'yunit': 'arb. u.',
'text': [],
'text_pos': [0.7, 0.9],
'text_pos_increments': [0, -0.1],
'reflections_plot': False, # whether to plot reflections as a plot
'reflections_indices': False, # whether to plot the reflection indices
'reflections_data': None, # Should be passed as a list of dictionaries on the form {path: rel_path, reflection_indices: number of indices, colour: [r,g,b], min_alpha: 0-1]
} }
options = aux.update_options(options=options, default_options=default_options, required_options=required_options) options = aux.update_options(options=options, default_options=default_options, required_options=required_options)
@ -1008,31 +1020,89 @@ def plot_refinement(data, options={}):
for attr in results.keys(): for attr in results.keys():
results[attr].append(result[attr].iloc[options['index']]) results[attr].append(result[attr].iloc[options['index']])
fig, ax = plt.subplots(figsize=(20,10)) # CREATE AND ASSIGN AXES
df.plot(x='2th', y='Yobs', kind='scatter', ax=ax, c='black', marker='$\u25EF$') # Makes a list out of reflections_data if it only passed as a dict, as it will be looped through later
if options['reflections_data']:
if not isinstance(options['reflections_data'], list):
options['reflections_data'] = [options['reflections_data']]
# Determine the grid layout based on how many sets of reflections data has been passed
if options['reflections_data'] and len(options['reflections_data']) >= 1:
options = determine_grid_layout(options=options)
# Create the Figure and Axes objects
fig, ax = btp.prepare_plot(options=options)
# Assign the correct axes to the indicies, reflections and figure itself
if options['reflections_plot'] or options['reflections_indices']:
if options['reflections_indices']:
indices_ax = ax[0]
if options['reflections_plot']:
ref_axes = [axx for axx in ax[range(1,len(options['reflections_data'])+1)]]
else:
ref_axes = [axx for axx in ax[range(0,len(options['reflections_data']))]]
ax = ax[-1]
df.plot.scatter(x='2th', y='Yobs', ax=ax, c='black', marker='$\u25EF$', s=plt.rcParams['lines.markersize']*10)
df.plot(x='2th', y='Ycalc', ax=ax, c='red') df.plot(x='2th', y='Ycalc', ax=ax, c='red')
df.plot(x='2th', y='diff', ax=ax) df.plot(x='2th', y='diff', ax=ax)
if options['r_wp']:
ax.text(x=0.7*df['2th'].max(), y=0.7*df['Yobs'].max(), s='R$_{wp}$ = '+f'{r_wp}', fontsize=20)
if options['r_exp']:
ax.text(x=0.70*df['2th'].max(), y=0.60*df['Yobs'].max(), s='R$_{exp}$ = '+f'{r_exp}', fontsize=20)
if options['sample']:
options['text'].append([options['sample'], [options['text_pos'][0]*df['2th'].max(), options['text_pos'][1]*df['Yobs'].max()]])
options['text_pos'][0] += options['text_pos_increments'][0]
options['text_pos'][1] += options['text_pos_increments'][1]
if options['wavelength']:
options['text'].append([f'$\lambda$ = {options["wavelength"]} Å', [options['text_pos'][0]*df['2th'].max(), options['text_pos'][1]*df['Yobs'].max()]])
options['text_pos'][0] += options['text_pos_increments'][0]
options['text_pos'][1] += options['text_pos_increments'][1]
if options['wp']: if options['wp']:
for i, (result, label) in enumerate(zip(data['results'], options['labels'])): for i, (result, label) in enumerate(zip(data['results'], options['labels'])):
ax.text(x=0.7*df['2th'].max(), y=(0.9-0.1*i)*df['Yobs'].max(), s=f'{label}: {np.round(float(results["wp"][i]), 2)}%', fontsize=20) options['text'].append([f'{label}: {np.round(float(results["wp"][i]), 1)}%', [options['text_pos'][0]*df['2th'].max(), options['text_pos'][1]*df['Yobs'].max()]])
#ax.text(x=0.7*df['2th'].max(), y=ypos*df['Yobs'].max(), s=f'{label}: {np.round(float(results["wp"][i]), 2)}%', fontsize=20)
options['text_pos'][0] += options['text_pos_increments'][0]
options['text_pos'][1] += options['text_pos_increments'][1]
if options['title']: if options['r_wp']:
ax.set_title(options['title'], size=30) options['text'].append(['R$_{wp}$ = '+f'{np.round(r_wp, 2)}', [options['text_pos'][0]*df['2th'].max(), options['text_pos'][1]*df['Yobs'].max()]])
options['text_pos'][0] += options['text_pos_increments'][0]
options['text_pos'][1] += options['text_pos_increments'][1]
#ax.text(x=0.7*df['2th'].max(), y=0.7*df['Yobs'].max(), s='R$_{wp}$ = '+f'{r_wp}')
if options['r_exp']:
options['text'].append(['R$_{exp}$ = '+f'{np.round(r_exp, 2)}', [options['text_pos'][0]*df['2th'].max(), options['text_pos'][1]*df['Yobs'].max()]])
options['text_pos'][0] += options['text_pos_increments'][0]
options['text_pos'][1] += options['text_pos_increments'][1]
#ax.text(x=0.70*df['2th'].max(), y=0.60*df['Yobs'].max(), s='R$_{exp}$ = '+f'{r_exp}')
if options['xlim']:
ax.set_xlim(options['xlim'])
else:
ax.set_xlim([df['2th'].min(), df['2th'].max()])
ax.tick_params(which='both', labelleft=False, left=False, labelsize=20, direction='in') if 'xlim' not in options.keys() or options['xlim'] == None:
ax.set_ylabel('Intensity [arb. u.]', size=20) options['xlim'] = [df['2th'].min(), df['2th'].max()]
ax.set_xlabel('2$\\theta$ [$^{\circ}$]', size=20)
fig, ax = btp.adjust_plot(fig=fig, ax=ax, options=options)
# PLOT REFLECTION TABLES
if options['reflections_plot'] and options['reflections_data']:
options['xlim'] = ax.get_xlim()
options['to_wavelength'] = options['wavelength'] # By default, the wavelength of the first diffractogram will be used for these.
# Plot each reflection table in the relevant axis
for reflections_params, axis in zip(options['reflections_data'], ref_axes):
plot_reflection_table(data=data, reflections_params=reflections_params, ax=axis, options=options)