Merge pull request #13 from rasmusthog/rasmus_xanes

Merge new XANES-functionality into main
This commit is contained in:
Rasmus Vester Thøgersen 2022-08-22 08:44:34 +00:00 committed by GitHub
commit fb63451fdd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 284 additions and 13 deletions

View file

@ -1 +1 @@
from . import io, calib, edges from . import io, calib, plot, edges

View file

@ -462,8 +462,6 @@ def smoothing(data: dict, options={}):
# Make plots ... # Make plots ...
if options['save_plots'] or options['show_plots']: if options['save_plots'] or options['show_plots']:
edge_pos = estimate_edge_position(data=data, options=options) edge_pos = estimate_edge_position(data=data, options=options)
step_length = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0] step_length = data['xanes_data']['ZapEnergy'].iloc[1] - data['xanes_data']['ZapEnergy'].iloc[0]
@ -563,8 +561,8 @@ def estimate_edge_position(data: dict, options={}, index=0):
options = aux.update_options(options=options, required_options=required_options, default_options=default_options) options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
#making new dataframe to keep the differentiated data #making new dataframe to keep the differentiated data
df_diff = pd.DataFrame(data['xanes_data_original']["ZapEnergy"]) df_diff = pd.DataFrame(data['xanes_data']["ZapEnergy"])
df_diff[data['path'][index]]=data['xanes_data_original'][data['path'][index]].diff(periods=options['periods']) df_diff[data['path'][index]]=data['xanes_data'][data['path'][index]].diff(periods=options['periods'])
#shifting column values up so that average differential fits right between the points used in the calculation #shifting column values up so that average differential fits right between the points used in the calculation
df_diff[data['path'][index]]=df_diff[data['path'][index]].shift(-int(options['periods']/2)) df_diff[data['path'][index]]=df_diff[data['path'][index]].shift(-int(options['periods']/2))

View file

@ -82,10 +82,19 @@ def split_scan_data(data: dict, options={}) -> list:
for i, scan_data in enumerate(scan_datas): for i, scan_data in enumerate(scan_datas):
if 'ZapEnergy' not in headers[i]:
if options['log']:
aux.write_log(message=f'... No valid scan data found... ({i+1}/{len(scan_datas)})', options=options)
continue
xanes_df = pd.DataFrame(scan_data).apply(pd.to_numeric) xanes_df = pd.DataFrame(scan_data).apply(pd.to_numeric)
xanes_df.columns = headers[i] xanes_df.columns = headers[i]
edge = find_element({'xanes_data_original': xanes_df}) edge = find_element({'xanes_data_original': xanes_df})
if options['log']: if options['log']:
aux.write_log(message=f'... Starting data clean-up ({edge}-edge)... ({i+1}/{len(scan_datas)})', options=options) aux.write_log(message=f'... Starting data clean-up ({edge}-edge)... ({i+1}/{len(scan_datas)})', options=options)
@ -183,15 +192,111 @@ def split_scan_data(data: dict, options={}) -> list:
def save_data(data: dict, options={}) -> None:
required_options = ['save_folder', 'overwrite', 'log', 'logfile', 'filename']
default_options = {
'log': False,
'logfile': f'{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_save_files.log',
'save_folder': 'saved_scans',
'overwrite': False,
'filename': f'{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}_exported_data.dat',
}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
# Check if there is any data to be saved
if not 'xanes_data' in data.keys():
if options['log']:
aux.write_log(message=f'There is not saved scan data in data. Exiting without saving...', options=options)
return None
if not isinstance(data['xanes_data'], pd.DataFrame):
if options['log']:
aux.write_log(message=f'data["xanes_data"] has an invalid format. Exiting without saving...', options=options)
return None
# Make folder(s) if it/they do(es)n't exist
if not os.path.exists(options['save_folder']):
if options['log']:
aux.write_log(message=f'Destination folder does not exist. Creating folder...', options=options)
os.makedirs(options['save_folder'])
if os.path.exists(os.path.join('save_folder', options['filename'])):
if not options['overwrite']:
if options['log']:
aux.write_log(message=f'File already exists and overwrite disabled. Exiting without saving...', options=options)
return None
with open(os.path.join(options['save_folder'], options['filename']), 'w') as f:
if 'e0_diff' in data.keys():
f.write(f'# Number of header lines: {len(data["path"])+1} \n')
for i, (path, e0) in enumerate(data['e0_diff'].items()):
f.write(f'# Scan_{i} \t {e0} \n')
else:
f.write(f'# Number of header lines: {1}')
data['xanes_data'].to_csv(f, sep='\t', index=False)
#data['xanes_data'].to_csv(os.path.join(options['save_folder'], options['filename']), sep='\t', index=False)
def load_data(path: str) -> dict:
# FIXME Let this function be called by read_data() if some criterium is passed
data = {}
with open(path, 'r') as f:
line = f.readline()
header_lines = int(line.split()[-1])
if header_lines > 1:
edge_positions = []
line = f.readline()
while line[0] == '#':
edge_positions.append(line.split()[-1])
line = f.readline()
data['xanes_data'] = pd.read_csv(path, sep='\t', skiprows=header_lines)
data['path'] = data['xanes_data'].columns.to_list()
data['path'].remove('ZapEnergy')
if header_lines > 1:
data['e0_diff'] = {}
for path, edge_position in zip(data['path'], edge_positions):
data['e0_diff'][path] = float(edge_position)
return data
def read_data(data: dict, options={}) -> pd.DataFrame: def read_data(data: dict, options={}) -> pd.DataFrame:
# FIXME Handle the case when dataseries are not the same size # FIXME Handle the case when dataseries are not the same size
# FIXME Add possibility to extract TIME (for operando runs) and Blower Temp (for variable temperature runs) # FIXME Add possibility to extract TIME (for operando runs) and Blower Temp (for variable temperature runs)
# FIXME Add possibility to iport transmission data # FIXME Add possibility to iport transmission data
required_options = ['adjust'] required_options = ['adjust', 'mode']
default_options = { default_options = {
'adjust': 0 'adjust': 0,
'mode': 'fluoresence'
} }
options = aux.update_options(options=options, required_options=required_options, default_options=default_options) options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
@ -211,11 +316,15 @@ def read_data(data: dict, options={}) -> pd.DataFrame:
scan_data = pd.read_csv(filename, skiprows=1) scan_data = pd.read_csv(filename, skiprows=1)
if options['mode'] == 'fluoresence':
if not options['active_roi']: if not options['active_roi']:
scan_data = scan_data[[determine_active_roi(scan_data)]] scan_data = scan_data[[determine_active_roi(scan_data)]]
else: else:
scan_data = scan_data[options['active_roi']] scan_data = scan_data[options['active_roi']]
elif options['mode'] == 'transmission':
scan_data = scan_data['MonEx'] / scan_data['Ion2']
xanes_data = pd.concat([xanes_data, scan_data], axis=1) xanes_data = pd.concat([xanes_data, scan_data], axis=1)

164
nafuma/xanes/plot.py Normal file
View file

@ -0,0 +1,164 @@
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator)
import pandas as pd
import numpy as np
import math
import datetime
#import ipywidgets as widgets
#from IPython.display import display
import nafuma.xanes as xas
import nafuma.plotting as btp
import nafuma.auxillary as aux
def plot_xanes(data, options={}):
# Update options
required_options = ['which_scans', 'xlabel', 'ylabel', 'xunit', 'yunit', 'exclude_scans', 'colours', 'gradient', 'rc_params', 'format_params']
default_options = {
'which_scans': 'all',
'xlabel': 'Energy', 'ylabel': 'Intensity',
'xunit': 'keV', 'yunit': 'arb. u.',
'exclude_scans': [],
'colours': None,
'gradient': False,
'rc_params': {},
'format_params': {}}
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not 'xanes_data' in data.keys():
data['xanes_data'] = xas.io.load_data(data=data, options=options)
# Update list of cycles to correct indices
update_scans_list(data=data, options=options)
colours = generate_colours(scans=options['which_scans'], options=options)
# Prepare plot, and read and process data
fig, ax = btp.prepare_plot(options=options)
# Add counter to pick out correct colour
counter = 0
for i, path in enumerate(data['path']):
if i in options['which_scans']:
data['xanes_data'].plot(x='ZapEnergy', y=path, ax=ax, c=colours[counter])
counter += 1
fig, ax = btp.adjust_plot(fig=fig, ax=ax, options=options)
#if options['interactive_session_active']:
return fig, ax
def pick_out_scans(metadata: dict, timestamp: list):
# If either start or end are None, set to way back when or way into the future
if not timestamp[0]:
timestamp[0] = datetime.datetime.strptime('1970 01 01 00:00:00', '%Y %m %d %H:%M:%S')
else:
timestamp[0] = datetime.datetime.strptime(timestamp[0], "%d.%b %y %H.%M.%S")
if not timestamp[1]:
timestamp[1] = datetime.datetime.strptime('3000 01 01 00:00:00', '%Y %m %d %H:%M:%S')
else:
timestamp[1] = datetime.datetime.strptime(timestamp[1], "%d.%b %y %H.%M.%S")
scans = []
for i, time in enumerate(metadata['time']):
if time >= timestamp[0] and time <= timestamp[1]:
scans.append(i)
return scans
def update_scans_list(data, options: dict) -> None:
if options['which_scans'] == 'all':
options['which_scans'] = [i for i in range(len(data['path']))]
elif isinstance(options['which_scans'], list):
scans =[]
for scan in options['which_scans']:
if isinstance(scan, int):
scans.append(scan-1)
elif isinstance(scan, tuple):
interval = [i-1 for i in range(scan[0], scan[1]+1)]
scans.extend(interval)
options['which_scans'] = scans
# Tuple is used to define an interval - as elements tuples can't be assigned, I convert it to a list here.
elif isinstance(options['which_scans'], tuple):
which_scans = list(options['which_scans'])
if which_scans[0] <= 0:
which_scans[0] = 1
elif which_scans[1] < 0:
which_scans[1] = len(options['which_scans'])
options['which_scans'] = [i-1 for i in range(which_scans[0], which_scans[1]+1)]
for i, scan in enumerate(options['which_scans']):
if scan in options['exclude_scans']:
del options['which_scans'][i]
def generate_colours(scans, options):
# FIXME Make this a generalised function and use this instead of this and in the electrochemsitry submodule
# Assign colours from the options dictionary if it is defined, otherwise use standard colours.
if options['colours']:
colour = options['colours']
else:
#colour = (214/255, 143/255, 214/255) # Plum Web (#D68FD6), coolors.co
colour = (90/255, 42/255, 39/255) # Caput Mortuum(#5A2A27), coolors.co
# If gradient is enabled, find start and end points for each colour
if options['gradient']:
add = min([(1-x)*0.75 for x in colour])
colour_start = colour
colour_end = [x+add for x in colour]
# Generate lists of colours
colours = []
for scan_number in range(0, len(scans)):
if options['gradient']:
weight_start = (len(scans) - scan_number)/len(scans)
weight_end = scan_number/len(scans)
colour = [weight_start*start_colour + weight_end*end_colour for start_colour, end_colour in zip(colour_start, colour_end)]
colours.append(colour)
return colours