import pandas as pd import numpy as np import matplotlib.pyplot as plt import os def read_data(path, kind, options=None): if kind == 'neware': df = read_neware(path) cycles = process_neware_data(df, options=options) elif kind == 'batsmall': df = read_batsmall(path) cycles = process_batsmall_data(df=df, options=options) elif kind == 'biologic': df = read_biologic(path) cycles = process_biologic_data(df=df, options=options) return cycles def read_batsmall(path): ''' Reads BATSMALL-data into a DataFrame. Input: path (required): string with path to datafile Output: df: pandas DataFrame containing the data as-is, but without additional NaN-columns.''' df = pd.read_csv(path, skiprows=2, sep='\t') df = df.loc[:, ~df.columns.str.contains('^Unnamed')] return df def read_neware(path, summary=False): ''' Reads electrochemistry data, currently only from the Neware battery cycler. Will convert to .csv if the filetype is .xlsx, which is the file format the Neware provides for the backup data. In this case it matters if summary is False or not. If file type is .csv, it will just open the datafile and it does not matter if summary is False or not.''' from xlsx2csv import Xlsx2csv # Convert from .xlsx to .csv to make readtime faster if path.split('.')[-1] == 'xlsx': csv_details = ''.join(path.split('.')[:-1]) + '_details.csv' csv_summary = ''.join(path.split('.')[:-1]) + '_summary.csv' if not os.path.isfile(csv_summary): Xlsx2csv(path, outputencoding="utf-8").convert(csv_summary, sheetid=3) if not os.path.isfile(csv_details): Xlsx2csv(path, outputencoding="utf-8").convert(csv_details, sheetid=4) if summary: df = pd.read_csv(csv_summary) else: df = pd.read_csv(csv_details) elif path.split('.')[-1] == 'csv': df = pd.read_csv(path) return df def read_biologic(path): ''' Reads Bio-Logic-data into a DataFrame. Input: path (required): string with path to datafile Output: df: pandas DataFrame containing the data as-is, but without additional NaN-columns.''' with open(path, 'r') as f: lines = f.readlines() header_lines = int(lines[1].split()[-1]) - 1 df = pd.read_csv(path, sep='\t', skiprows=header_lines) df.dropna(inplace=True, axis=1) return df def process_batsmall_data(df, options=None): ''' Takes BATSMALL-data in the form of a DataFrame and cleans the data up and converts units into desired units. Splits up into individual charge and discharge DataFrames per cycle, and outputs a list where each element is a tuple with the Chg and DChg-data. E.g. cycles[10][0] gives the charge data for the 11th cycle. For this to work, the cycling program must be set to use the counter. Input: df (required): A pandas DataFrame containing BATSMALL-data, as obtained from read_batsmall(). t (optional): Unit for time data. Defaults to ms. C (optional): Unit for specific capacity. Defaults to mAh/g. I (optional): Unit for current. Defaults mA. U (optional): Unit for voltage. Defaults to V. Output: cycles: A list with ''' required_options = ['splice_cycles', 'molecular_weight', 'reverse_discharge', 'units'] default_options = {'splice_cycles': None, 'molecular_weight': None, 'reverse_discharge': False, 'units': None} if not options: options = default_options else: for option in required_options: if option not in options.keys(): options[option] = default_options[option] # Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new. new_units = set_units(units=options['units']) old_units = get_old_units(df, kind='batsmall') df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='batsmall') options['units'] = new_units # Replace NaN with empty string in the Comment-column and then remove all steps where the program changes - this is due to inconsistent values for current df[["comment"]] = df[["comment"]].fillna(value={'comment': ''}) df = df[df["comment"].str.contains("program")==False] # Creates masks for charge and discharge curves chg_mask = df['current'] >= 0 dchg_mask = df['current'] < 0 # Initiate cycles list cycles = [] # Loop through all the cycling steps, change the current and capacities in the for i in range(df["count"].max()): sub_df = df.loc[df['count'] == i].copy() sub_df.loc[dchg_mask, 'current'] *= -1 sub_df.loc[dchg_mask, 'specific_capacity'] *= -1 chg_df = sub_df.loc[chg_mask] dchg_df = sub_df.loc[dchg_mask] # Continue to next iteration if the charge and discharge DataFrames are empty (i.e. no current) if chg_df.empty and dchg_df.empty: continue if options['reverse_discharge']: max_capacity = dchg_df['capacity'].max() dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity) if 'specific_capacity' in df.columns: max_capacity = dchg_df['specific_capacity'].max() dchg_df['specific_capacity'] = np.abs(dchg_df['specific_capacity'] - max_capacity) if 'ions' in df.columns: max_capacity = dchg_df['ions'].max() dchg_df['ions'] = np.abs(dchg_df['ions'] - max_capacity) cycles.append((chg_df, dchg_df)) return cycles def process_neware_data(df, options=None): """ Takes data from NEWARE in a DataFrame as read by read_neware() and converts units, adds columns and splits into cycles. Input: df: pandas DataFrame containing NEWARE data as read by read_neware() units: dictionary containing the desired units. keywords: capacity, current, voltage, mass, energy, time splice_cycles: tuple containing index of cycles that should be spliced. Specifically designed to add two charge steps during the formation cycle with two different max voltages active_materiale_weight: weight of the active material (in mg) used in the cell. molecular_weight: the molar mass (in g mol^-1) of the active material, to calculate the number of ions extracted. Assumes one electron per Li+/Na+-ion """ required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles'] default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None} if not options: options = default_options else: for option in required_options: if option not in options.keys(): options[option] = default_options[option] # Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new. new_units = set_units(units=options['units']) old_units = get_old_units(df=df, kind='neware') df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='neware') df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='neware') options['units'] = new_units # Creates masks for charge and discharge curves chg_mask = df['status'] == 'CC Chg' dchg_mask = df['status'] == 'CC DChg' # Initiate cycles list cycles = [] # Loop through all the cycling steps, change the current and capacities in the for i in range(df["cycle"].max()): sub_df = df.loc[df['cycle'] == i].copy() #sub_df.loc[dchg_mask, 'current'] *= -1 #sub_df.loc[dchg_mask, 'capacity'] *= -1 chg_df = sub_df.loc[chg_mask] dchg_df = sub_df.loc[dchg_mask] # Continue to next iteration if the charge and discharge DataFrames are empty (i.e. no current) if chg_df.empty and dchg_df.empty: continue if options['reverse_discharge']: max_capacity = dchg_df['capacity'].max() dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity) if 'specific_capacity' in df.columns: max_capacity = dchg_df['specific_capacity'].max() dchg_df['specific_capacity'] = np.abs(dchg_df['specific_capacity'] - max_capacity) if 'ions' in df.columns: max_capacity = dchg_df['ions'].max() dchg_df['ions'] = np.abs(dchg_df['ions'] - max_capacity) cycles.append((chg_df, dchg_df)) return cycles def process_biologic_data(df, options=None): required_options = ['units', 'active_material_weight', 'molecular_weight', 'reverse_discharge', 'splice_cycles'] default_options = {'units': None, 'active_material_weight': None, 'molecular_weight': None, 'reverse_discharge': False, 'splice_cycles': None} if not options: options = default_options else: for option in required_options: if option not in options.keys(): options[option] = default_options[option] # Pick out necessary columns df = df[['Ns changes', 'Ns', 'time/s', 'Ewe/V', 'Energy charge/W.h', 'Energy discharge/W.h', '/mA', 'Capacity/mA.h', 'cycle number']].copy() # Complete set of new units and get the units used in the dataset, and convert values in the DataFrame from old to new. new_units = set_units(units=options['units']) old_units = get_old_units(df=df, kind='biologic') df = add_columns(df=df, active_material_weight=options['active_material_weight'], molecular_weight=options['molecular_weight'], old_units=old_units, kind='biologic') df = unit_conversion(df=df, new_units=new_units, old_units=old_units, kind='biologic') options['units'] = new_units # Creates masks for charge and discharge curves chg_mask = (df['status'] == 1) & (df['status_change'] != 1) dchg_mask = (df['status'] == 2) & (df['status_change'] != 1) # Initiate cycles list cycles = [] # Loop through all the cycling steps, change the current and capacities in the for i in range(int(df["cycle"].max())): sub_df = df.loc[df['cycle'] == i].copy() #sub_df.loc[dchg_mask, 'current'] *= -1 #sub_df.loc[dchg_mask, 'capacity'] *= -1 chg_df = sub_df.loc[chg_mask] dchg_df = sub_df.loc[dchg_mask] # Continue to next iteration if the charge and discharge DataFrames are empty (i.e. no current) if chg_df.empty and dchg_df.empty: continue if options['reverse_discharge']: max_capacity = dchg_df['capacity'].max() dchg_df['capacity'] = np.abs(dchg_df['capacity'] - max_capacity) if 'specific_capacity' in df.columns: max_capacity = dchg_df['specific_capacity'].max() dchg_df['specific_capacity'] = np.abs(dchg_df['specific_capacity'] - max_capacity) if 'ions' in df.columns: max_capacity = dchg_df['ions'].max() dchg_df['ions'] = np.abs(dchg_df['ions'] - max_capacity) cycles.append((chg_df, dchg_df)) return cycles def add_columns(df, active_material_weight, molecular_weight, old_units, kind): if kind == 'neware': if active_material_weight: df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity({})".format(old_units['capacity'])] / (active_material_weight) if molecular_weight: faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1 seconds_per_hour = 3600 # s h^-1 f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1 df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f if kind == 'biologic': if active_material_weight: capacity = old_units['capacity'].split('h')[0] + '.h' df["SpecificCapacity({}/mg)".format(old_units["capacity"])] = df["Capacity/{}".format(capacity)] / (active_material_weight) if molecular_weight: faradays_constant = 96485.3365 # [F] = C mol^-1 = As mol^-1 seconds_per_hour = 3600 # s h^-1 f = faradays_constant / seconds_per_hour * 1000.0 # [f] = mAh mol^-1 df["IonsExtracted"] = (df["SpecificCapacity({}/mg)".format(old_units['capacity'])]*molecular_weight)*1000/f return df def unit_conversion(df, new_units, old_units, kind): from . import unit_tables if kind == 'batsmall': df["TT [{}]".format(old_units["time"])] = df["TT [{}]".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']] df["U [{}]".format(old_units["voltage"])] = df["U [{}]".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']] df["I [{}]".format(old_units["current"])] = df["I [{}]".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']] df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] = df["C [{}/{}]".format(old_units["capacity"], old_units["mass"])] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]] / unit_tables.mass()[old_units["mass"]].loc[new_units["mass"]]) df.columns = ['time', 'voltage', 'current', 'count', 'specific_capacity', 'comment'] if kind == 'neware': df['Current({})'.format(old_units['current'])] = df['Current({})'.format(old_units['current'])] * unit_tables.current()[old_units['current']].loc[new_units['current']] df['Voltage({})'.format(old_units['voltage'])] = df['Voltage({})'.format(old_units['voltage'])] * unit_tables.voltage()[old_units['voltage']].loc[new_units['voltage']] df['Capacity({})'.format(old_units['capacity'])] = df['Capacity({})'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] df['Energy({})'.format(old_units['energy'])] = df['Energy({})'.format(old_units['energy'])] * unit_tables.energy()[old_units['energy']].loc[new_units['energy']] df['CycleTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_time_string(row['Relative Time(h:min:s.ms)'], unit=new_units['time']), axis=1) df['RunTime({})'.format(new_units['time'])] = df.apply(lambda row : convert_datetime_string(row['Real Time(h:min:s.ms)'], reference=df['Real Time(h:min:s.ms)'].iloc[0], unit=new_units['time']), axis=1) columns = ['status', 'jump', 'cycle', 'steps', 'current', 'voltage', 'capacity', 'energy'] if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns: df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]] columns.append('specific_capacity') if 'IonsExtracted' in df.columns: columns.append('ions') columns.append('cycle_time') columns.append('run_time') df.drop(['Record number', 'Relative Time(h:min:s.ms)', 'Real Time(h:min:s.ms)'], axis=1, inplace=True) df.columns = columns if kind == 'biologic': df['time/{}'.format(old_units['time'])] = df["time/{}".format(old_units["time"])] * unit_tables.time()[old_units["time"]].loc[new_units['time']] df["Ewe/{}".format(old_units["voltage"])] = df["Ewe/{}".format(old_units["voltage"])] * unit_tables.voltage()[old_units["voltage"]].loc[new_units['voltage']] df["/{}".format(old_units["current"])] = df["/{}".format(old_units["current"])] * unit_tables.current()[old_units["current"]].loc[new_units['current']] capacity = old_units['capacity'].split('h')[0] + '.h' df["Capacity/{}".format(capacity)] = df["Capacity/{}".format(capacity)] * (unit_tables.capacity()[old_units["capacity"]].loc[new_units["capacity"]]) columns = ['status_change', 'status', 'time', 'voltage', 'energy_charge', 'energy_discharge', 'current', 'capacity', 'cycle'] if 'SpecificCapacity({}/mg)'.format(old_units['capacity']) in df.columns: df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] = df['SpecificCapacity({}/mg)'.format(old_units['capacity'])] * unit_tables.capacity()[old_units['capacity']].loc[new_units['capacity']] / unit_tables.mass()['mg'].loc[new_units["mass"]] columns.append('specific_capacity') if 'IonsExtracted' in df.columns: columns.append('ions') df.columns = columns return df def set_units(units=None): # Complete the list of units - if not all are passed, then default value will be used required_units = ['time', 'current', 'voltage', 'capacity', 'mass', 'energy', 'specific_capacity'] default_units = {'time': 'h', 'current': 'mA', 'voltage': 'V', 'capacity': 'mAh', 'mass': 'g', 'energy': 'mWh', 'specific_capacity': None} if not units: units = default_units if units: for unit in required_units: if unit not in units.keys(): units[unit] = default_units[unit] units['specific_capacity'] = r'{} {}'.format(units['capacity'], units['mass']) + '$^{-1}$' return units def get_old_units(df, kind): if kind=='batsmall': time = df.columns[0].split()[-1].strip('[]') voltage = df.columns[1].split()[-1].strip('[]') current = df.columns[2].split()[-1].strip('[]') capacity, mass = df.columns[4].split()[-1].strip('[]').split('/') old_units = {'time': time, 'current': current, 'voltage': voltage, 'capacity': capacity, 'mass': mass} if kind=='neware': for column in df.columns: if 'Voltage' in column: voltage = column.split('(')[-1].strip(')') elif 'Current' in column: current = column.split('(')[-1].strip(')') elif 'Capacity' in column: capacity = column.split('(')[-1].strip(')') elif 'Energy' in column: energy = column.split('(')[-1].strip(')') old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy} if kind=='biologic': for column in df.columns: if 'time' in column: time = column.split('/')[-1] elif 'Ewe' in column: voltage = column.split('/')[-1] elif 'Capacity' in column: capacity = column.split('/')[-1].replace('.', '') elif 'Energy' in column: energy = column.split('/')[-1].replace('.', '') elif '' in column: current = column.split('/')[-1] old_units = {'voltage': voltage, 'current': current, 'capacity': capacity, 'energy': energy, 'time': time} return old_units def convert_time_string(time_string, unit='ms'): ''' Convert time string from Neware-data with the format hh:mm:ss.xx to any given unit''' h, m, s = time_string.split(':') ms = float(s)*1000 + int(m)*1000*60 + int(h)*1000*60*60 factors = {'ms': 1, 's': 1/1000, 'min': 1/(1000*60), 'h': 1/(1000*60*60)} t = ms*factors[unit] return t def convert_datetime_string(datetime_string, reference, unit='s'): ''' Convert time string from Neware-data with the format yyy-mm-dd hh:mm:ss to any given unit''' from datetime import datetime # Parse the current_date, current_time = datetime_string.split() current_year, current_month, current_day = current_date.split('-') current_hour, current_minute, current_second = current_time.split(':') current_date = datetime(int(current_year), int(current_month), int(current_day), int(current_hour), int(current_minute), int(current_second)) reference_date, reference_time = reference.split() reference_year, reference_month, reference_day = reference_date.split('-') reference_hour, reference_minute, reference_second = reference_time.split(':') reference_date = datetime(int(reference_year), int(reference_month), int(reference_day), int(reference_hour), int(reference_minute), int(reference_second)) days = current_date - reference_date s = days.days*24*60*60 + days.seconds factors = {'ms': 1000, 's': 1, 'min': 1/(60), 'h': 1/(60*60)} time = s * factors[unit] return time def splice_cycles(first, second): first_chg = first[0] first_dchg = first[1] first second_chg = second[0] second_dchg = second[1] chg_df = first[0].append(second[0]) return True