nafuma/beamtime/xrd/plot.py
2022-03-31 14:02:04 +02:00

467 lines
18 KiB
Python

import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,AutoMinorLocator)
import pandas as pd
import numpy as np
import math
import ipywidgets as widgets
import beamtime.xrd as xrd
import beamtime.auxillary as aux
import beamtime.plotting as btp
def plot_diffractogram(data, options={}):
''' Plots a diffractogram.
Input:
data (dict): Must include path = string to diffractogram data, and plot_kind = (recx, beamline, image)'''
# Update options
required_options = ['x_vals', 'y_vals', 'ylabel', 'xlabel', 'xunit', 'yunit', 'line', 'scatter', 'xlim', 'ylim', 'normalise', 'offset', 'offset_x', 'offset_y',
'reflections_plot', 'reflections_indices', 'reflections_data', 'plot_kind', 'palettes', 'interactive', 'rc_params', 'format_params', 'interactive_session_active']
default_options = {
'x_vals': '2th',
'y_vals': 'I',
'ylabel': 'Intensity', 'xlabel': '2theta',
'xunit': 'deg', 'yunit': 'a.u.',
'xlim': None, 'ylim': None,
'normalise': True,
'offset': True,
'offset_x': 0,
'offset_y': 1,
'line': True, # whether or not to plot diffractogram as a line plot
'scatter': False, # whether or not to plot individual data points
'reflections_plot': False, # whether to plot reflections as a plot
'reflections_indices': False, # whether to plot the reflection indices
'reflections_data': None, # Should be passed as a list of dictionaries on the form {path: rel_path, reflection_indices: number of indices, colour: [r,g,b], min_alpha: 0-1]
'plot_kind': None,
'palettes': [('qualitative', 'Dark2_8')],
'interactive': False,
'interactive_session_active': False,
'rc_params': {},
'format_params': {},
}
if 'offset_y' not in options.keys():
if len(data['path']) > 10:
default_options['offset_y'] = 0.05
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
# Convert data['path'] to list to allow iteration over this to accommodate both single and multiple diffractograms
if not isinstance(data['path'], list):
data['path'] = [data['path']]
# Check if there is some data stored already, load in data if not. This speeds up replotting in interactive mode.
if not 'diffractogram' in data.keys():
# Initialise empty list for diffractograms and wavelengths
data['diffractogram'] = [None for _ in range(len(data['path']))]
data['wavelength'] = [None for _ in range(len(data['path']))]
for index in range(len(data['path'])):
diffractogram, wavelength = xrd.io.read_data(data=data, options=options, index=index)
data['diffractogram'][index] = diffractogram
data['wavelength'][index] = wavelength
else:
if not isinstance(data['diffractogram'], list):
data['diffractogram'] = [data['diffractogram']]
data['wavelength'] = [data['wavelength']]
# Sets the xlim if this has not bee specified
if not options['xlim']:
options['xlim'] = [diffractogram[options['x_vals']].min(), diffractogram[options['x_vals']].max()]
if options['interactive_session_active']:
if options['offset']:
if (options['offset_x'] != options['current_offset_x']) or (options['offset_y'] != options['current_offset_y']):
for i, (diff, wl) in enumerate(zip(data['diffractogram'], data['wavelength'])):
xrd.io.apply_offset(diff, wl, i, options)
# Start inteactive session with ipywidgets. Disables options['interactive'] in order for the interactive loop to not start another interactive session
if options['interactive']:
options['interactive'] = False
options['interactive_session_active'] = True
plot_diffractogram_interactive(data=data, options=options)
return
# Makes a list out of reflections_data if it only passed as a dict, as it will be looped through later
if options['reflections_data']:
if not isinstance(options['reflections_data'], list):
options['reflections_data'] = [options['reflections_data']]
# Determine number of subplots and height ratios between them
if len(options['reflections_data']) >= 1:
options = determine_grid_layout(options=options)
# Prepare plot, and read and process data
fig, ax = btp.prepare_plot(options=options)
# Assign the correct axes
if options['reflections_plot'] or options['reflections_indices']:
if options['reflections_indices']:
indices_ax = ax[0]
if options['reflections_plot']:
ref_axes = [axx for axx in ax[range(1,len(options['reflections_data'])+1)]]
else:
ref_axes = [axx for axx in ax[range(0,len(options['reflections_data']))]]
ax = ax[-1]
if len(data['path']) < 10:
colours = btp.generate_colours(options['palettes'])
else:
colours = btp.generate_colours(['black'], kind='single')
for diffractogram in data['diffractogram']:
if options['line']:
diffractogram.plot(x=options['x_vals'], y=options['y_vals'], ax=ax, c=next(colours), zorder=1)
if options['scatter']:
ax.scatter(x=diffractogram[options['x_vals']], y = diffractogram[options['y_vals']], c=[(1,1,1,0)], edgecolors=[next(colours)], linewidths=plt.rcParams['lines.markeredgewidth'], zorder=2) #, edgecolors=np.array([next(colours)]))
fig, ax = btp.adjust_plot(fig=fig, ax=ax, options=options)
# Make the reflection plots. By default, the wavelength of the first diffractogram will be used for these.
if options['reflections_plot'] and options['reflections_data']:
options['xlim'] = ax.get_xlim()
options['to_wavelength'] = data['wavelength'][0]
for reference, axis in zip(options['reflections_data'], ref_axes):
plot_reflection_table(data=reference, ax=axis, options=options)
# Print the reflection indices. By default, the wavelength of the first diffractogram will be used for this.
if options['reflections_indices'] and options['reflections_data']:
options['xlim'] = ax.get_xlim()
options['to_wavelength'] = data['wavelength'][0]
for reference in options['reflections_data']:
plot_reflection_indices(data=reference, ax=indices_ax, options=options)
if options['interactive_session_active']:
btp.update_widgets(options=options)
return diffractogram, fig, ax
def determine_grid_layout(options):
nrows = 1 if not options['reflections_indices'] else 2
if options['reflections_plot']:
for reference in options['reflections_data']:
nrows += 1
options['format_params']['nrows'] = nrows
options['format_params']['grid_ratio_height'] = [1 for i in range(nrows-1)]+[10]
return options
def plot_diffractogram_interactive(data, options):
minmax = {'2th': [None, None], '2th_cuka': [None, None], '2th_moka': [None, None], 'd': [None, None], '1/d': [None, None], 'q': [None, None], 'q2': [None, None], 'q4': [None, None]}
update_minmax(minmax, data)
ymin, ymax = None, None
for index, diffractogram in enumerate(data['diffractogram']):
if not ymin or (ymin > (diffractogram['I'].min())): #+index*options['offset_y'])):
ymin = diffractogram['I'].min()#+index*options['offset_y']
if not ymax or (ymax < (diffractogram['I'].max())):#+index*options['offset_y'])):
ymax = diffractogram['I'].max()#+index*options['offset_y']
ymin_start = ymin - 0.1*ymax
ymax_start = ymax+0.2*ymax
ymin = ymin - 5*ymax
ymax = ymax*5
options['widgets'] = {
'xlim': {
'w': widgets.FloatRangeSlider(value=[minmax['2th'][0], minmax['2th'][1]], min=minmax['2th'][0], max=minmax['2th'][1], step=0.5, layout=widgets.Layout(width='95%')),
'state': '2th',
'2th_default': {'min': minmax['2th'][0], 'max': minmax['2th'][1], 'value': [minmax['2th'][0], minmax['2th'][1]], 'step': 0.5},
'2th_cuka_default': {'min': minmax['2th_cuka'][0], 'max': minmax['2th_cuka'][1], 'value': [minmax['2th_cuka'][0], minmax['2th_cuka'][1]], 'step': 0.5},
'2th_moka_default': {'min': minmax['2th_moka'][0], 'max': minmax['2th_moka'][1], 'value': [minmax['2th_moka'][0], minmax['2th_moka'][1]], 'step': 0.5},
'd_default': {'min': minmax['d'][0], 'max': minmax['d'][1], 'value': [minmax['d'][0], minmax['d'][1]], 'step': 0.5},
'1/d_default': {'min': minmax['1/d'][0], 'max': minmax['1/d'][1], 'value': [minmax['1/d'][0], minmax['1/d'][1]], 'step': 0.5},
'q_default': {'min': minmax['q'][0], 'max': minmax['q'][1], 'value': [minmax['q'][0], minmax['q'][1]], 'step': 0.5},
'q2_default': {'min': minmax['q2'][0], 'max': minmax['q2'][1], 'value': [minmax['q2'][0], minmax['q2'][1]], 'step': 0.5},
'q4_default': {'min': minmax['q4'][0], 'max': minmax['q4'][1], 'value': [minmax['q4'][0], minmax['q4'][1]], 'step': 0.5}
}
}
if options['reflections_data']:
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_diffractogram), data=widgets.fixed(data), options=widgets.fixed(options),
scatter=widgets.ToggleButton(value=False),
line=widgets.ToggleButton(value=True),
reflections_plot=widgets.ToggleButton(value=True),
reflections_indices=widgets.ToggleButton(value=False),
x_vals=widgets.Dropdown(options=['2th', 'd', '1/d', 'q', 'q2', 'q4', '2th_cuka', '2th_moka'], value='2th', description='X-values'),
xlim=options['widgets']['xlim']['w'],
ylim=widgets.FloatRangeSlider(value=[ymin_start, ymax_start], min=ymin, max=ymax, step=0.5, layout=widgets.Layout(width='95%')),
offset_y=widgets.BoundedFloatText(value=options['offset_y'], min=-5, max=5, step=0.01),
offset_x=widgets.BoundedFloatText(value=options['offset_x'], min=-1, max=1, step=0.01)
)
else:
w = widgets.interactive(btp.ipywidgets_update, func=widgets.fixed(plot_diffractogram), data=widgets.fixed(data), options=widgets.fixed(options),
scatter=widgets.ToggleButton(value=False),
line=widgets.ToggleButton(value=True),
xlim=options['widgets']['xlim']['w'])
display(w)
def update_minmax(minmax, data):
''' Finds minimum and maximum values of each column and updates the minmax dictionary to contain the correct values.
Input:
minmax (dict): contains '''
for index, diffractogram in enumerate(data['diffractogram']):
if not minmax['2th'][0] or diffractogram['2th'].min() < minmax['2th'][0]:
minmax['2th'][0] = diffractogram['2th'].min()
min_index = index
if not minmax['2th'][1] or diffractogram['2th'].max() > minmax['2th'][1]:
minmax['2th'][1] = diffractogram['2th'].max()
max_index = index
minmax['2th_cuka'][0], minmax['2th_cuka'][1] = data['diffractogram'][min_index]['2th_cuka'].min(), data['diffractogram'][max_index]['2th_cuka'].max()
minmax['2th_moka'][0], minmax['2th_moka'][1] = data['diffractogram'][min_index]['2th_moka'].min(), data['diffractogram'][max_index]['2th_moka'].max()
minmax['d'][0], minmax['d'][1] = data['diffractogram'][max_index]['d'].min(), data['diffractogram'][min_index]['d'].max() # swapped, intended
minmax['1/d'][0], minmax['1/d'][1] = data['diffractogram'][min_index]['1/d'].min(), data['diffractogram'][max_index]['1/d'].max()
minmax['q'][0], minmax['q'][1] = data['diffractogram'][min_index]['q'].min(), data['diffractogram'][max_index]['q'].max()
minmax['q2'][0], minmax['q2'][1] = data['diffractogram'][min_index]['q2'].min(), data['diffractogram'][max_index]['q2'].max()
minmax['q4'][0], minmax['q4'][1] = data['diffractogram'][min_index]['q4'].min(), data['diffractogram'][max_index]['q4'].max()
def update_widgets(options):
for widget in options['widgets'].values():
if widget['state'] != options['x_vals']:
for arg in widget[f'{options["x_vals"]}_default']:
setattr(widget['w'], arg, widget[f'{options["x_vals"]}_default'][arg])
widget['state'] = options['x_vals']
def plot_reflection_indices(data, ax, options={}):
''' Print reflection indices from output generated by VESTA.
Required contents of data:
path (str): relative path to reflection table file'''
required_options = ['reflection_indices', 'text_colour', 'hide_indices']
default_options = {
'reflection_indices': 3, # Number of reflection indices to plot, from highest intensity and working its way down
'text_colour': 'black',
'hide_indices': False
}
data = aux.update_options(options=data, required_options=required_options, default_options=default_options)
if not data['hide_indices']:
reflection_table = xrd.io.load_reflection_table(data=data, options=options)
if data['reflection_indices'] > 0:
# Get the data['reflection_indices'] number of highest reflections within the subrange options['xlim']
reflection_indices = reflection_table.loc[(reflection_table[options['x_vals']] > options['xlim'][0]) & (reflection_table[options['x_vals']] < options['xlim'][1])].nlargest(options['reflection_indices'], 'I')
# Plot the indices
for i in range(data['reflection_indices']):
if reflection_indices.shape[0] > i:
ax.text(s=f'({reflection_indices["h"].iloc[i]} {reflection_indices["k"].iloc[i]} {reflection_indices["l"].iloc[i]})', x=reflection_indices[options['x_vals']].iloc[i], y=0, fontsize=2.5, rotation=90, va='bottom', ha='center', c=data['text_colour'])
if options['xlim']:
ax.set_xlim(options['xlim'])
ax.axis('off')
return
def plot_reflection_table(data, ax=None, options={}):
''' Plots a reflection table from output generated by VESTA.
Required contents of data:
path (str): relative path to reflection table file'''
required_options = ['reflection_indices', 'reflections_colour', 'min_alpha', 'wavelength', 'format_params', 'rc_params', 'label']
default_options = {
'reflection_indices': 0, # Number of indices to print
'reflections_colour': [0,0,0],
'min_alpha': 0,
'wavelength': 1.54059, # CuKalpha, [Å]
'format_params': {},
'rc_params': {},
'label': None
}
if 'colour' in data.keys():
options['reflections_colour'] = data['colour']
if 'min_alpha' in data.keys():
options['min_alpha'] = data['min_alpha']
if 'reflection_indices' in data.keys():
options['reflection_indices'] = data['reflection_indices']
if 'label' in data.keys():
options['label'] = data['label']
if 'wavelength' in data.keys():
options['wavelength'] = data['wavelength']
options = aux.update_options(options=options, required_options=required_options, default_options=default_options)
if not ax:
_, ax = btp.prepare_plot(options)
reflection_table = xrd.io.load_reflection_table(data=data, options=options)
reflections, intensities = reflection_table[options['x_vals']], reflection_table['I']
colours = []
for ref, intensity in zip(reflections, intensities):
colour = list(options['reflections_colour'])
rel_intensity = (intensity / intensities.max())*(1-options['min_alpha']) + options['min_alpha']
colour.append(rel_intensity)
colours.append(colour)
ax.vlines(x=reflections, ymin=-1, ymax=1, colors=colours, lw=0.5)
ax.set_ylim([-0.5,0.5])
ax.tick_params(which='both', bottom=False, labelbottom=False, right=False, labelright=False, left=False, labelleft=False, top=False, labeltop=False)
if options['xlim']:
ax.set_xlim(options['xlim'])
if options['label']:
xlim_range = ax.get_xlim()[1] - ax.get_xlim()[0]
ylim_avg = (ax.get_ylim()[0]+ax.get_ylim()[1])/2
ax.text(s=data['label'], x=(ax.get_xlim()[0]-0.01*xlim_range), y=ylim_avg, ha = 'right', va = 'center')
def prettify_labels(label):
labels_dict = {
'2th': '2$\\theta$',
'I': 'Intensity'
}
return labels_dict[label]
def plot_diffractograms(paths, kind, options=None):
fig, ax = prepare_diffractogram_plot(options=options)
diffractograms = []
for path in paths:
diffractogram = xrd.io.read_data(path=path, kind=kind, options=options)
diffractograms.append(diffractogram)
required_options = ['type', 'xvals', 'yvals', 'x_offset', 'y_offset', 'normalise', 'normalise_around', 'reverse_order']
default_options = {
'type': 'stacked',
'xvals': '2th',
'yvals': 'I',
'x_offset': 0,
'y_offset': 0.2,
'normalise': True,
'normalise_around': None,
'reverse_order': False
}
# If reverse_order is enabled, reverse the order
if options['reverse_order']:
diffractograms = reverse_diffractograms(diffractograms)
# If normalise is enbaled, normalise all the diffractograms
if options['normalise']:
if not options['normalise_around']:
for diffractogram in diffractograms:
diffractogram["I"] = diffractogram["I"]/diffractogram["I"].max()
else:
diffractogram["I"] = diffractogram["I"]/diffractogram["I"].loc[(diffractogram['2th'] > options['normalise_around'][0]) & (diffractogram['2th'] < options['normalise_around'][1])].max()
if options['type'] == 'stacked':
for diffractogram in diffractograms:
diffractogram.plot(x=options['xvals'], y=options['yvals'], ax=ax)
fig, ax = prettify_diffractogram_plot(fig=fig, ax=ax, options=options)
return diffractogram, fig, ax
def reverse_diffractograms(diffractograms):
rev_diffractograms = []
for i in len(diffractograms):
rev_diffractograms.append(diffractograms.pop())
return rev_diffractograms
#def plot_heatmap():